A Profit-based Mixed Integer Programming Model for Stope Boundary Optimization and Implementation in Indian Copper Deposits
Publish place: Journal of Mining and Environment، Vol: 16، Issue: 4
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 92
This Paper With 15 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-16-4_003
تاریخ نمایه سازی: 17 خرداد 1404
Abstract:
The optimal layout of the stope (stope boundary) in an underground metal mine maximizes the profit of a deposit, subject to the geotechnical and operational mining constraints such as stope length, stope width, stope height. Various approaches have been introduced to address the stope boundary optimization problem, but due to the computational complexity and numerous practical constraints, the existing models offer partial solutions to the problem. In the present work, a mixed integer programming model has been developed by incorporating mining constraints in a three-dimensional framework. This model is developed based on profit maximization. The sensitivity analysis applied in a case study mine indicates that the model is efficient in assessing the upside potential and downside risk of profit under fluctuating metal prices and mining costs. Additionally, it can be applied at different stages of mine design to facilitate resource appraisal, selection of stoping methods, and comprehensive mine planning. In a practical application on a real orebody, it shows that the proposed model can generate upto ۳۷.۳۲% more profit compared to current stope design practice in the mines.
Keywords:
Authors
Gopinath Samanta
Senior Technologist (Mining), Process Technology Group, Tata Steel Limited, Jamshedpur, India,
Tapan Dey
Data and analytics, TCS, Kolkata ۷۰۰۱۵۶, India
Suranjan Sinha
Department of Mining Engineering, Indian Institute of Engineering, Science & Technology, Shibpur, Howrah
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :