Deep Learning- based Smart Traffic Prediction for Enhanced Quality of Service in Software-defined Networking
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 109
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-39-3_014
تاریخ نمایه سازی: 18 تیر 1404
Abstract:
Software-defined networking (SDN) separates the control and data planes that utilizes a centralized controller for efficient management and control. By collecting traffic flow attributes through the southbound interface, SDN enables flexible packet forwarding. However, high traffic volumes in large-scale dynamic networks, such as data centers, can cause congestion, packet loss, and delays. Real-time traffic forecasting is essential to mitigate these issues but it requires capturing complex spatiotemporal relationships which traditional models struggle to achieve. This paper addresses these challenges by extending an SDN dataset using traffic traces from a real-world network and introducing a novel hybrid traffic prediction model that combines long short-term memory (LSTM) and gradient boost regression (GBR) for accurate traffic prediction in SDN environments. This study creates a dataset with complex models for classification and regression. The proposed model predicts network throughput based on four critical routing metrics: hop count, latency, packet loss, and queue length. The predictions are utilized within a smart selection protocol, namely the adaptive selection protocol (ASP), to dynamically adjust routing decisions to significantly enhance the overall network performance. Simulation results demonstrate that the proposed LSTM-GBR model achieves an accuracy score of ۰.۹۹۶ for predicting throughput values while reducing congestion and latency and improving throughput by ۳۹% and ۲۰۰% when integrating the prediction process with the ASP technique compared to the traditional prediction methods. Implemented using Mininet with Python, the proposed approach demonstrates significant improvement in network efficiency and scalability, offering robust solutions for real-time traffic management in SDN environments.
Keywords:
Authors
A. Mahdi
University of Samarra, Samarra, Iraq
A. Al Saadi
University of Technology, Baghdad, Iraq
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :