Rural Crash Severity Modelling at Marginal Areas around Cities in Iran Using Ordinal Logistic Regression and Partial Proportional Odds Modelling Approaches
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 94
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJTE-12-4_003
تاریخ نمایه سازی: 18 تیر 1404
Abstract:
Proof from earlier investigations indicates that many rural crashes happen in marginal areas around cities. Therefore, Exclusive crash severity models should be developed to pinpoint the factors linked to the increased likelihood of injury and fatality in these segments of rural roads. For this purpose, a partial Proportional Odds (PPO) model alongside the traditional ones including ordered logit (OL) and multinomial logit (MNL) models was utilized in this study to develop crash severity models for these segments of roads. The authors applied rural crash data gathered from highways that lead to Isfahan for modelling. The PPO model outperforms the traditional models, as demonstrated by comparing developed models. Also, the results indicate that rural crashes are more likely to be severe when the average speed exceeds ۹۵ km/h, in multi-vehicle type crashes, in overturn-type crashes, when the at-fault vehicle is a truck/trailer, and when the at-fault or not-at-fault vehicle is a motorcycle. On the other hand, severe crashes in marginal areas around cities tend to decrease when a foreign vehicle is at fault and when the driver of the at-fault vehicle is ۳۰ to ۴۰ years old.
Keywords:
Rural Highway , crash severity , Partial Proportional Odds model , ordered logit model , Multinomial Logit Model
Authors
Hamid Shamanian Esfahani
Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Seyed Teimour Hoseini
Amin University, Tehran, Iran
Reza Sakhaei
Amin University, Tehran, Iran
Majid Ehsani Sohi
Amin University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :