Appraisal of Multiple Intelligence-Based Instruction: the case of learners’ perceptions
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 142
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ELT-17-35_008
تاریخ نمایه سازی: 20 تیر 1404
Abstract:
Language learning is a multifaceted process influenced by various factors, including learners’ individual preferences and cognitive strengths. This mixed-methods study investigates how dominant intelligences influence the instructional preferences and perceptions of ۳۰ male Turkish-speaking EFL learners, aged ۱۳-۱۷, using a structured questionnaire and semi-structured interviews. The research explores the relationship between learners’ intelligences and specific teaching approaches, with data analyzed through both quantitative and qualitative methods. Participants were categorized into two groups based on their dominant intelligences: Group A (interpersonal and intrapersonal) and Group B (linguistic and visual/spatial). Analysis of the data reveals that learners gravitate towards learning styles that align with their dominant intelligences, with Group A favoring interactive and self-directed approaches, while Group B leans towards visual and experiential methods. Despite a limited awareness of MI theory, the participants express satisfaction with MI-based instruction, viewing it as more engaging and effective compared to traditional methods. This study underscores the significance of incorporating learner preferences into language instruction and highlights the potential of MI-based approaches to enhance learner engagement and motivation.
Keywords:
Authors
Sajjad Gharibeh-Gharibeh
Department of English Language, Urmia University, Urmia, Iran.
Zhila Mohammadnia
Department of English Language, Urmia University, Urmia, Iran
Mahdi Sarkhosh
Department of English Language, Urmia University, Urmia, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :