Medical Image Processing of Patients for Skin Cancer Diagnosis Using Artificial Intelligence
Publish place: Transactions on Machine Intelligence، Vol: 8، Issue: 1
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 112
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-8-1_004
تاریخ نمایه سازی: 22 تیر 1404
Abstract:
Skin cancer represents a serious and growing global public health challenge, with incidence rates increasing steadily across diverse populations. Early diagnosis and timely intervention play a vital role in reducing mortality and improving treatment outcomes. Traditionally, accurate diagnosis has relied on the expertise of trained dermatologists, posing accessibility challenges in resource-limited settings. In recent years, artificial intelligence (AI) technologies particularly deep learning and advanced image processing techniques have emerged as promising tools for assisting in medical image analysis and automated disease detection. This study presents a computer-aided diagnosis (CAD) system based on deep convolutional neural networks (CNNs) designed for the early detection of skin cancer through dermoscopic image analysis. The CNN model was trained and tested on a curated dataset, and achieved a prediction accuracy of ۹۰.۵%. The system demonstrates strong potential for identifying malignant skin lesions with high precision, contributing to the rapid, non-invasive, and cost-effective assessment of skin abnormalities. The use of deep learning in this context not only improves diagnostic speed but also offers a scalable solution for screening large populations. These findings underscore the transformative role of AI in dermatological diagnostics and highlight the capability of CNN-based systems to complement clinical expertise. Future work will focus on enhancing model robustness, incorporating multi-modal data, and validating performance through real-world clinical trials.
Keywords:
Authors
S. Gorgbandi
Department of Computer Science, Faculty of Engineering, Falaq Unit, Islamic Azad University, Arak, Iran
S.
Assistant Professor, Department of Computer Science, Islamic Azad University, Arak, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :