Skin Melanoma Cancer Detection Using Particle Swarm Optimization Algorithm and Deep Learning

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 76

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TMCH-7-3_002

تاریخ نمایه سازی: 22 تیر 1404

Abstract:

Skin cancer is one of the most prevalent and life-threatening forms of cancer, with its incidence rapidly increasing over the past few decades. Early detection plays a crucial role in improving the survival rate of individuals diagnosed with skin cancer, particularly melanoma, which is the deadliest form. Traditionally, skin cancer diagnosis has relied on time-consuming and invasive methods such as skin biopsy. However, with advancements in technology, automated diagnosis through intelligent techniques has shown the potential to expedite the detection process and increase diagnostic accuracy. Among the various methods explored for skin cancer detection, Convolutional Neural Networks (CNNs) have emerged as one of the most effective deep learning models. CNNs are capable of learning and extracting intricate features from skin images, making them highly suitable for melanoma classification tasks. In this study, a deep CNN model is designed and evaluated for classifying melanoma from other skin lesions. Key parameters of the CNN, such as filter size and the number of filters, are optimized using the Particle Swarm Optimization (PSO) algorithm. This optimization process aims to minimize classification errors and enhance the overall performance of the model. The simulation results reveal that the proposed method outperforms existing frameworks, achieving a remarkable accuracy rate of ۹۶% on the utilized dataset, demonstrating the effectiveness and reliability of the proposed approach for melanoma detection.

Keywords:

Skin Cancer , Convolutional Neural Networks , Particle Swarm Optimization Algorithm

Authors

T.

Department of Electrical Engineering, Hadaf Higher Education Institute, Sari, Iran

K.

Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran

M.

Department of Electrical Engineering, Islamic Azad University, Sari Branch, Sari, Iran

S. M.

Assistant Professor, Department of Electrical Engineering, Hadaf Higher Education Institute, Sari, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :