Optimal Routing-Clustering Aware of Energy Consumption in Wireless Sensor Networks based on Deep Tree Learning
Publish place: Transactions on Machine Intelligence، Vol: 6، Issue: 4
Publish Year: 1402
نوع سند: مقاله ژورنالی
زبان: English
View: 90
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-6-4_005
تاریخ نمایه سازی: 22 تیر 1404
Abstract:
Presently, the application of Wireless Sensor Networks (WSNs) poses challenges across various domains, with the most prominent being the energy consumption of sensor batteries. Sensor nodes, dispersed in diverse geographical environments for their designated purposes, rely on batteries for data collection. The deployment of sensor nodes induces energy losses during data collection and transmission, particularly in routing data, which demands substantial energy. To tackle this issue, clustering is employed either before or concurrently with routing. This article explores the implementation of clustering-routing alongside sleep and wake scheduling in sensor nodes to effectively conserve energy. The study introduces the optimal OCADR (Constrained Anisotropic Diffusion Routing) protocol, enhancing it with the DAVL (Deep Adelson-Velskii and Landis) tree rotation clustering algorithm. The research reveals that this innovative approach offers improved scheduling in terms of sensor nodes' sleep and wake time compared to prior methods. Moreover, it efficiently transmits packets to the base station through the head clusters. The initial energy allocation was ۵۰ Joules, and after simulation using this method, only ۲۲ Joules were consumed, leaving ۲۸ Joules for network survival an advancement surpassing earlier methodologies.
Keywords:
wireless sensor networks (WSNs) , Constrained Anisotropic Diffusion Routing (CADR) , Sleep and Awake Scheduling , Velskii and Landis (AVL) Tree , Clustering , routing , Deep Learning
Authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :