Optimized Reactive Power Distribution for Enhancing Power System Efficiency Using a Generalized Teaching-Learning-Based Optimization Algorithm

Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 123

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TMCH-4-3_005

تاریخ نمایه سازی: 23 تیر 1404

Abstract:

Electrical energy generation in power systems aims to minimize the total production cost of active units within the power network, making it one of the most critical aspects of modern power systems. Optimal reactive power distribution is a key approach to ensuring the reliable and economical operation of power systems. The primary objective of reactive power distribution in power networks is to determine the control variables that minimize the objective function while adhering to system constraints. In this paper, a hybrid optimization algorithm is introduced, combining the Multi-Objective Teaching-Learning-Based Optimization (MTLBO) method with a fuzzy decision-making algorithm to solve the Reactive Power Dispatch (RPD) problem. The proposed method addresses multiple objectives, including reducing active power losses, improving voltage profiles, and enhancing network security. To assess the effectiveness of the proposed approach, simulations were performed on IEEE ۵۷-bus and ۱۱۸-bus test systems. The simulation results confirm the efficiency and superiority of the proposed method compared to conventional optimization techniques.

Keywords:

Authors

M.

MSc Student, Power Engineering Department, Faculty of Engineering, Boroujerd Branch, Islamic Azad University, Iran

A.

Assistant Professor, Department of Electrical Engineering, Arak University of Technology, Arak, Iran

M.

Assistant Professor, Electrical Engineering Department, Boroujerd Branch, Islamic Azad University, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Wu, Q. H., Cao, Y. J., & Wen, J. Y. ...
  • Dorigo, M., Maniezzo, V., & Coloroni, A. (۱۹۹۱). The Ant ...
  • Kannan, S., Slochanal, M. R., Subbaraj, P., & Padhy, N. ...
  • Shaw, B., Mukherjee, V., & Ghoshal, S. (۲۰۱۴). Solution of ...
  • نمایش کامل مراجع