Detection of Pavement Damage Using Smartphones
Publish place: Transactions on Machine Intelligence، Vol: 4، Issue: 2
Publish Year: 1400
نوع سند: مقاله ژورنالی
زبان: English
View: 65
This Paper With 9 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TMCH-4-2_001
تاریخ نمایه سازی: 23 تیر 1404
Abstract:
Early detection and repair of pavement damage can significantly reduce the associated maintenance and repair costs. In recent years, efforts have been made to use digital hardware and software to streamline the inspection and diagnostic process. However, in a real-world scenario, the resource limitations, high cost, and time-consuming nature of these digital units have diminished their efficiency. In the past decade, smartphones have gained remarkable hardware capabilities. Mobile phones, aided by GPS, record location information and capture high-quality images with powerful lenses. This research aims to utilize machine learning algorithms to employ smartphones for pavement inspection. Deep learning, a method capable of pattern recognition and solving complex problems, has been chosen as the machine learning technique. The learning process of this algorithm is conducted using samples collected from pavement surfaces via smartphones. The study further aims to enhance the speed and processing power of the learning method through new parameters. Additionally, a defined framework is provided to assess the quality of damage, facilitating effective action by route managers.
Keywords:
Authors
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :