Energy Demand Prediction in Smart Grids Using Neural Networks Based on Optimization

Publish Year: 1399
نوع سند: مقاله ژورنالی
زبان: English
View: 85

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TMCH-3-4_004

تاریخ نمایه سازی: 23 تیر 1404

Abstract:

Demand prediction plays a crucial role in the real-time operation of electrical systems, particularly for monitoring, planning, and optimizing the operation of electrical devices. Accurate demand prediction ensures effective coordination between consumers and power companies, which is essential for efficient power grid management. This paper presents a novel approach for energy demand prediction using a neural network combined with an optimization-based method. Initially, a conventional neural network is employed to predict the required energy demand based on historical data. However, to improve prediction accuracy, a genetic algorithm (GA) is introduced to adjust the neural network’s weights automatically. This optimization method fine-tunes the network, enabling it to achieve better performance in predicting short-term energy demand. The integration of the genetic algorithm helps in overcoming the limitations of traditional training methods, such as slow convergence or local minima. Experimental results, based on real-time data randomly selected from various sources, demonstrate that the genetic algorithm-based neural network outperforms conventional approaches in terms of prediction accuracy and computational efficiency. The proposed method is validated through extensive testing, showing its potential for accurate short-term load forecasting in dynamic and complex energy systems. This research highlights the effectiveness of optimization algorithms in enhancing the predictive power of neural networks for energy demand forecasting.

Authors

A.

Power Group, School of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

M.

Associate Professor, School of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :