An Intelligent Method for Detecting and Classifying Dental Caries from Dental Radiographic Images

Publish Year: 1398
نوع سند: مقاله ژورنالی
زبان: English
View: 88

This Paper With 11 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_TMCH-2-3_005

تاریخ نمایه سازی: 23 تیر 1404

Abstract:

In recent years, dental image processing has become an essential tool in the early diagnosis and management of dental diseases, particularly dental caries. This technology addresses inherent limitations in traditional dental radiographs, such as low contrast and overlapping anatomical structures. However, despite technological progress, the accurate detection of dental caries remains a challenging task primarily due to the variability and non-uniformity of dental X-ray images. Most existing computer-aided diagnostic (CAD) systems rely heavily on supervised learning models that require large, annotated datasets. These models often perform sub optimally when confronted with images that differ significantly from the training data, leading to diagnostic inaccuracies. In this study, we propose an innovative method for tooth segmentation and caries detection from a diverse set of dental X-rays using an unsupervised learning approach. Unlike conventional systems, the proposed method employs a diagnostic protocol inspired by clinical dental evaluations, enabling the system to assess carious lesions relative to the structure and features of each individual image rather than relying on fixed detectors. Experimental results demonstrate that our method achieves a diagnostic accuracy of ۹۶%, outperforming current supervised approaches. These findings highlight the robustness and adaptability of the proposed unsupervised framework, making it a promising solution for real-world dental diagnostic applications.

Authors

M.

Department of Electrical Engineering, Faculty of Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran

M.

Department of Electrical Engineering, Faculty of Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran

J.

Department of Electrical Engineering, Faculty of Engineering, Kazerun Branch, Islamic Azad University, Kazerun, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Zabir, I., Paul, S., Rayhan, M. A., & Sarker, T. ...
  • Moreira, R. S. (۲۰۱۲). Epidemiology of dental caries in the ...
  • Boughattas, N., Berar, M., & Hamrouni, K. (۲۰۱۸). Feature selection ...
  • Rad, A. E., Amin, I. B. M., Rahim, M. S. ...
  • Ahmad, S. A., Taib, M. N., Khalid, N. E. A., ...
  • Tracy, K. D., Dykstra, B. A., Gakenheimer, D. C., Scheetz, ...
  • Dykstra, B. (۲۰۰۸). Interproximal caries detection: How good are we? ...
  • Oliveira, J. (۲۰۰۹). Caries detection in panoramic dental X-ray images. ...
  • نمایش کامل مراجع