Nose-to-ID: A Deep Learning Framework for Dog Identification Using Nose-Print Biometrics

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 122

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CSE-4-2_005

تاریخ نمایه سازی: 13 مرداد 1404

Abstract:

Accurate identification of individual dogs plays a crucial role in various applications including pet recovery, veterinary management, and animal welfare. This study proposes a fully automated dog identification framework based on unique nose-print biometric patterns, leveraging deep learning techniques to overcome limitations of traditional identification methods. The proposed approach processes user-submitted videos by selecting the most frontal frame via head pose estimation, detects the nose region using a fine-tuned YOLOv۸ model, and extracts discriminative embeddings through a multi-resolution ResNeSt-based convolutional network enhanced with advanced augmentation strategies. The resulting embeddings are fused to produce robust identity descriptors capable of distinguishing between thousands of individual dogs. Experimental results demonstrate the system’s efficacy under real-world conditions, emphasizing its potential for practical deployment in pet identification and management systems.

Authors

Hediyeh Mosafer

Department of Computer Engineering, Faculty of Technology and Engineering- East of Guilan, University of Guilan, Guilan, Iran.

Homa Taherpour Gelsefid

Department of Computer Engineering, Faculty of Technology and Engineering- East of Guilan, University of Guilan, Guilan, Iran

Rana Ghozat

Department of Computer Engineering, Faculty of Technology and Engineering- East of Guilan, University of Guilan, Guilan, Iran

Armin Azhdehnia

Department of Computer Engineering, Faculty of Technology and Engineering- East of Guilan, University of Guilan, Guilan, Iran

Javad Ghofrani

Department of Computer Science, University of Applied Sciences Bonn-Rhein-Sieg, Germany

Ehsan Kozegar

Faculty of Technology and Engineering, University of Guilan

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • K. Lai, X. Tu and S. Yanushkevich, (۲۰۱۹) "Dog Identification ...
  • T. Moreira, M. Perez, R. Werneck, and E. Valle, (۲۰۱۷) ...
  • Y. Qiao, D. Su, H. Kong, S. Sukkarieh, S. Lomax, ...
  • E. Azizi and L. Zaman, (۲۰۲۳) "Deep learning pet identification ...
  • S. Schneider, G. W. Taylor, and S. C. Kremer, (۲۰۲۰) ...
  • A. Voinea, R. Kock, and M. A. Dhali, (۲۰۲۵) "LostPaw: ...
  • Alibaba Cloud Tianchi, "CVPR۲۰۲۲ Biometrics Workshop – Pet Biometric Challenge," ...
  • H. Zhang, et al., "ResNeSt: Split-Attention Networks," GitHub repository, [Online]. ...
  • B. Li, Z. Wang, N. Wu, S. Shi, and Q. ...
  • Z. Li, Z. Li, H. Zheng, B. Liu, R. Wang, ...
  • نمایش کامل مراجع