Adaptive reversible data hiding scheme based on novel cascading prediction error histogram shifting using decimal floating stream
Publish place: majlesi Journal of Electrical Engineering، Vol: 19، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 138
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-19-2_017
تاریخ نمایه سازی: 18 مرداد 1404
Abstract:
Today, with the development of processing technologies and improvement in cloud networks, a large number of photos are transferred in networks. The need to hide data and maintain security attracted the attention of researchers. In this paper, a reversible data hiding method based on the prediction error histogram shifting is proposed in order to increase the embedding capacity and maintains the visual quality of the image as well. To reach these goals, the original image is transformed into block-wise and for each block the prediction method is figured based on the proposed method to create prediction errors. According to our prediction method, in each ۴×۴ block, ۷۵% of the prediction error pixels can find the ability to embed information. The experimental results show a good acceptable embedding capacity as it is clear in a sample test image of an airplane. In this case, the embedding capacity of ۲۰۶,۲۷۰ bits and a Peak Signal-to-Noise Ratio (PSNR) of ۵۰.۹۹ dB have been reached. These results show the efficiency of our proposed method based on theembedding capacity and visual quality of the images. The outcomes of the proposed method reach better results than the main competitor methods.
Keywords:
Authors
Reza Ghorbandost
Cyber Security Research Center, Department of Electrical Engineering, SR.C, Islamic Azad University, Tehran, Iran.
Maryam Rajabzadeh Asaar
Cyber Security Research Center, Department of Electrical Engineering, SR.C, Islamic Azad University, Tehran, Iran.
Pouya Derakhshan Barjoei
Artificial Intelligence and Data Analysis Research Center, Department of Electrical Engineering, SR.C., Islamic Azad University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :