Solar panel fault diagnosis based on the intelligent recursive method
Publish place: majlesi Journal of Electrical Engineering، Vol: 19، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 99
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-19-2_005
تاریخ نمایه سازی: 18 مرداد 1404
Abstract:
The solar panel or solar cell is one of the most important components of the solar system that produces electrical energy with high efficiency compatible with electrical loads, but any defect in this cell can cause its efficiency to decrease. The objective of this work is to establish a fault diagnosis method that can be implemented in a real structure. These faults are diagnosed and located by implementing an algorithm based on the measured values of the solar panel using an intelligent recursive least squares approach. Our objective is to contribute to the diagnosis of faults in photovoltaic systems based on fuzzy logic in a recurrent manner. The integration of recursive least squares (RLS) with fuzzy logic are essential to improve system efficiency and reliability. This approach enables rapid identification and resolution of faults, helping to avoid energy losses, reduce downtime, and support proactive maintenance. It guarantees the optimal functioning of solar panels, maximizing energy production and improving return on investment. Quantitatively, this method achieves high diagnostic accuracy (over ۹۰%), reduces error rates by up to ۳۰% under dynamic conditions, andprovides real-time fault detection with minimal latency. The combination of RLS and fuzzy logic improves fault diagnosis by effectively handling uncertainties and handling ambiguous situations better than traditional methods.
Keywords:
Authors
Saadat Boulanouar
Faculty of Technology, University of Chlef ۰۲۰۰۰ DZ, Algeria
Fengal Boualem
Faculty of Technology, University of Chlef ۰۲۰۰۰ DZ, Algeria
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :