Advancing Over-the-Air Federated Learning through Deep Reinforcement Learning in UAV-Assisted Networks with Movable Antennas
Publish place: Computer and Knowledge Engineering، Vol: 8، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 91
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-8-2_001
تاریخ نمایه سازی: 19 مرداد 1404
Abstract:
This paper investigates the deployment of over-the-air federated learning (OTA-FL), leveraging the dynamic repositioning and line-of-sight communication capabilities of unmanned aerial vehicles (UAVs) and movable antennas to enhance network efficiency. A closed-form expression is derived to quantify the optimality gap between the actual federated learning (FL) model and its theoretical ideal, accounting for the capabilities of movable antennas to show the diverse relationship between Mean Square Error (MSE) and the optimality gap. Then An MSE minimization problem is then formulated, involving the joint optimization of moveable antenna position vectors, and the beamforming vector at the UAV. This complex non-convex problem is reformulated as a Markov Decision Process (MDP) and solved using the Twin Delayed Deep Deterministic Policy Gradient (TD۳) algorithm within the deep reinforcement learning (DRL) framework. Numerical results demonstrate that the proposed algorithm outperforms benchmarks such as Advantage Actor-Critic(A۲C) and Soft Actor-Critic (SAC).
Keywords:
Authors
Mohsen Ahmadzadeh
Department of Electric and Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
Saeid Pakravan
Department of Electric and Computer Engineering, Laval University, Quebec City, Canada,
Ghosheh Hodtani
Department of Electric and Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :