Portable Holter with Cloud-Based Learning Analytics for Real-Time Health Monitoring

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 98

This Paper With 14 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JBPE-15-4_009

تاریخ نمایه سازی: 21 مرداد 1404

Abstract:

The increasing prevalence of cardiovascular diseases underscores the need for efficient and user-friendly tools to monitor heart health. Traditional Holter monitors, while effective, are often bulky and inconvenient, limiting their use in real-world scenarios. This study introduces the Smart Portable Holter, a wireless device designed for real-time cardiac monitoring, enabling early detection of heart irregularities with enhanced accuracy and user convenience. The device captures continuous electrocardiogram signals and transmits them to a secure cloud platform for processing. Machine learning models, including Random Forest and Extreme Gradient Boosting (XGBoost), analyze the data to detect cardiac events. The system’s performance was evaluated using real-world datasets, emphasizing accuracy and reliability in identifying cardiac arrhythmias. The Smart Portable Holter delivers an impressive ۹۸% accuracy in detecting cardiac events. Its compact and wireless design enhances user comfort, allowing for seamless wear throughout the day. Coupled with advanced analytics, it offers detailed, time-stamped records that empower both users and healthcare professionals. These features facilitated early diagnosis and supported personalized treatment planning for patients with varying cardiac conditions. The Smart Portable Holter represents a significant advancement in cardiac care, combining portability, real-time analytics, and high diagnostic accuracy. By empowering patients and healthcare providers with actionable insights, it fosters proactive heart health management and contributes to improved clinical outcomes.

Authors

Abdi Dharma

Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia

Poltak Sihombing

Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia

Syahril Efendi

Department of Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia

Herman Mawengkang

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia

Arjon Turnip

Department of Electrical Engineering, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung, Indonesia

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • World Health Organization. E-health. Available from: https://www.emro.who.int/health-topics/ehealth/ (World Health Organization ...
  • Bansal M. Cardiovascular disease and COVID-۱۹. Diabetes Metab Syndr. ۲۰۲۰;۱۴(۳):۲۴۷-۵۰. ...
  • Rahman MO, Kashem MA, Nayan AA, Akter M, Rabbi F, ...
  • Kamble P, Birajdar A. IoT based portable ECG monitoring device ...
  • Turnip A, Taufik M, Kusumandari DE. Precision blood pressure prediction ...
  • Faruk N, Abdulkarim A, Emmanuel I, Folawiyo YY, Adewole KS, ...
  • Sladojevic S, Anderla A, Gutai A, Arsenovic M, Sladojevic M, ...
  • Lucas S, Desai M, Khot A, Harriet S, Jain K. ...
  • Kang TW, Lee J, Kwon Y, Lee YJ, Yeo WH. ...
  • Martín Gómez R, Allevard E, Kamstra H, Cotter J, Lamb ...
  • Singh D, Bhati S, Deshmukh A, Sen D. Future Prediction ...
  • Alamatsaz N, Tabatabaei L, Yazdchi M, Payan H, Alamatsaz N, ...
  • Qtaish A, Al-Shrouf A. A Portable IoT-cloud ECG Monitoring System ...
  • Wang Y, Bi X, Zhao Y. Design and Development of ...
  • Gunda S, Akyeampong D, Gomez-Arroyo J, Jovin DG, Kowlgi NG, ...
  • Przybylski R, Meziab O, Gauvreau K, Dionne A, DeWitt ES, ...
  • Tiwari A, Chugh A, Sharma A. Ensemble framework for cardiovascular ...
  • Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality ...
  • Bertrand É, Caru M, Harvey A, Andelfinger G, Laverdiere C, ...
  • Breiman L, Friedman J, Olshen RA, Stone CJ. Classification and ...
  • Ho TK. Random decision forests. In Proceedings of ۳rd international ...
  • Zhang Y, Nie B, Du J, Chen J, Du Y, ...
  • Chen T, Guestrin C. Xgboost: A scalable tree boosting system. ...
  • Chen M, Liu Q, Chen S, Liu Y, Zhang CH, ...
  • Quer G, Radin JM, Gadaleta M, Baca-Motes K, Ariniello L, ...
  • نمایش کامل مراجع