Mechanical Performance of Slag-Based HPFRGC with Varying Silica Fume Replacement and Fiber Types
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 121
This Paper With 21 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-14-2_007
تاریخ نمایه سازی: 28 مرداد 1404
Abstract:
As Portland cement production greatly affects the environment, more focus is being placed on using geopolymer concrete (GPC) as an alternative. This study explores the mechanical performance of high-performance fiber-reinforced geopolymer concrete (HPFRGC) using slag-based binders partially replaced with silica fume at levels of ۰%, ۵%, ۱۰%, and ۱۵%. The effects of incorporating steel and glass fibers at ۰.۵% and ۱% volume fractions on compressive and splitting tensile strengths were also evaluated at ۷ and ۲۸ days. Results indicate that ۵–۱۰% silica fume replacement enhances compressive and tensile strength, with ۱۰% being optimal. Excessive replacement (۱۵%) reduced strength due to dilution of reactive content. Steel fibers were more effective than glass fibers, particularly at ۱% content, yielding up to ۱۲.۷% and ۳۸.۶% improvements in compressive and tensile strengths, respectively. Moderate benefits were seen from using glass fibers, mainly in tensile performance. Failure pattern analysis showed that fiber-free specimens experienced brittle fractures, while fiber-reinforced mixes exhibited improved crack control and ductility. Overall, the combined use of ۱۰% silica fume and ۱% steel fiber offers the best enhancement in mechanical performance, suggesting an effective approach for developing sustainable, high-performance geopolymer concretes.
Keywords:
Authors
Morteza Amooie
Ph.D. Candidate, Department of Civil Engineering, Guilan University, Rasht, Iran
Ali Sadrmomtazi
Professor, Faculty of Civil Engineering, Guilan University, Rasht, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :