Comparative Study on Damage Detection for Plate Structures Using Chaotic-TLBO with Multiple Objective Functions
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 117
This Paper With 18 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CIVLJ-14-2_006
تاریخ نمایه سازی: 28 مرداد 1404
Abstract:
Structural Health Monitoring (SHM) has a crucial role in maintaining the safety and longevity of critical structures, such as buildings, bridges, and aerospace components. Early detection of structural damage, allows for timely intervention, reducing costs and preventing catastrophic failures. This study introduces an innovative approach for damage detection in plate structures by enhancing the Teaching-Learning-Based Optimization (TLBO) algorithm through the integration of chaotic maps. The proposed method, termed Chaotic Teaching-Learning-Based Optimization (CTLBO), leverages the dynamic properties of chaotic maps to improve the algorithm's performance and robustness. The proposed method utilizes modal data to solve an inverse optimization problem, aiming to enhance the accuracy of damage detection. Two benchmark plate structures namely an L-plate with dual clamps and a Rectangular plate with a quarter-circle cutout, are analyzed under noisy and noise-free conditions. Four objective functions, formulated based on modal frequencies and mode shapes, are utilized to quantify the error in damage localization and severity estimation. The effectiveness of the CTLBO algorithm is evaluated against the standard TLBO algorithm. Results demonstrate that CTLBO outperforms TLBO, particularly in noisy environments, achieving near-zero error and offering superior robustness in identifying damage locations and intensities. The findings suggest that the integration of chaotic maps improves the convergence speed and reliability of the TLBO algorithm, making it a promising tool for real-world SHM applications.
Keywords:
Authors
Ali Abedi
School of Civil Engineering, Iran University of Science and Technology, HengamStreet, Narmak, Tehran, ۶۷۶۵-۱۶۳, Tehran, Iran
Ali Shabani Rad
School of Civil Engineering, Iran University of Science and Technology, HengamStreet, Narmak, Tehran, ۶۷۶۵-۱۶۳, Tehran, Iran
Gholamreza Ghodrati Amiri
Natural Disasters Prevention Research Center, School of Civil Engineering, Iran University of Science and Technology, HengamStreet, Narmak, Tehran, ۶۷۶۵-۱۶۳, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :