Construction of¯X − R control charts using Beta distribution for triangular fuzzy quality
Publish place: Iranian Journal of Fuzzy Systems، Vol: 22، Issue: 1
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 87
This Paper With 21 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFS-22-1_004
تاریخ نمایه سازی: 8 شهریور 1404
Abstract:
The primary objective of statistical quality control is to ensure that products or services meet predetermined standards while minimizing variation and instability in processes. Control charts are indispensable tools in quality control, playing a crucial role in enhancing and improving process quality. Given their significance, incorporating fuzzy quality into control charts introduces flexibility into product quality assessment. In this paper, we design mean (¯ X) and range (R) control charts based on fuzzy quality, as opposed to traditional crisp or precise quality. We construct quantile-based control charts for the degree of membership of observations to triangular fuzzy quality using parameter estimation in the beta distribution. Specifically, we propose two novel methods for constructing¯ X and R control charts, namely, the method of moments and maximum likelihood estimation, both based on triangular fuzzy quality.
Keywords:
Quantile-based control chart , fuzzy quality , Beta distribution , Maximum likelihood estimation , Method of moments estimation
Authors
Fatemeh Ghaderi
Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman
Abbas Parchami
Department of Statistics, Faculty of Mathematics and Computer Sciences, Shahid Bahonar University of Kerman, Kerman
Vahid Amirzadeh
Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Hamideh Iranmanesh
Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :