Fractional Fuzzy Inference System (FFIS) Design and Implementation for Temperature Control

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 91

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJFS-22-2_009

تاریخ نمایه سازی: 8 شهریور 1404

Abstract:

Precise temperature regulation is essential in various industrial applications, particularly in environments requiring high accuracy and stability, such as egg incubation. Conventional control strategies, including Proportional-Integral-Derivative (PID) controllers and Fuzzy Inference Systems (FIS), often exhibit limitations in handling nonlinearities, disturbances, and uncertainties. To address these challenges, this research proposes a Fractional Fuzzy Inference System-based PID (FFIS-PID) controller, which enhances the adaptability and robustness of temperature control mechanisms. Unlike traditional fuzzy systems that rely solely on membership degrees, FFIS introduces fractional membership functions and fractional indices, enabling a more flexible and dynamic interpretation of fuzzy rules. The key innovation lies in the fractional compositional rule of inference, which allows the system to intelligently balance the influence of rules by adjusting their impact based on both the truth degree and the information volume. This enhances the adaptability of the control strategy without altering the fundamental rule base structure. The study involves designing fractional membership functions, selecting optimal fractional indices, and evaluating their effects on system behavior. A comparative analysis between FIS-PID and FFIS-PID controllers is conducted through simulations and experimental validation on an incubator system. The results confirm that the FFIS-PID controller provides superior temperature regulation by enabling real-time adaptability to changing conditions. This work contributes to the field of intelligent control by providing a novel approach to fuzzy inference enhancement through fractional compositional rule of inference mechanism. Future research could extend this methodology to other nonlinear control applications, further leveraging fractional indices for improved decision-making and stability.

Keywords:

Control strategy , Precise temperature control , Fractional Fuzzy Inference System (FFIS) , Real-world testing

Authors

Johanna Atenyi

۵۷۹, Qianwangang Road Huangdao

Chuanjiang Wang

۵۷۹, Qianwangang Road Huangdao

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • M. Al-Amin, M. S. Islam, Design of an intelligent temperature ...
  • ۱۵۹۰/۱۸۰۹-۴۴۳۰-Eng.Agric.v۴۲n۴e۲۰۲۲۰۰۵۰/۲۰۲۲[۳] M. Cengiz, F. N. Deniz, O. Ozguven, Comparative performance ...
  • ۲۰۲۳.۱۲۱۹۳۶[۷] Y. Z. Maulana, F. Fathurrohman, G. Wibisono, Egg incubator ...
  • ۲۹۲۰۷/resti.v۷i۲.۴۷۲۸[۸] M. Mazandarani, P. Jianfei, The Q-fractionalism reasoning learning method, ...
  • A. M. E. R. Mendoza, W. Yu, Fuzzy adaptive control ...
  • ۲۰۲۵.۴۹۳۹۹.۸۷۱۸[۱۴] Z. Muhammad, S. H. A. Dziauddin, S. A. Hamid, ...
  • نمایش کامل مراجع