Optimizing identity and access management through ۱D-SCNN-based anomaly detection

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 63

This Paper With 19 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_APRIE-11-4_005

تاریخ نمایه سازی: 11 شهریور 1404

Abstract:

Identity and Access Management (IAM) systems are critical in the ever-evolving digital landscape as legacy security methods fall short against modern cyber threats. This study proposes a fast and accurate anomaly detection method named ۱D-Separable Convolutional Neural Networks (۱D-SCNN), effectively detecting abnormal identity access or credential abuse. This method utilizes deep learning to analyze user activity and access habits from a one-dimensional structure, leveraging the benefits of ۱D-SCNN, such as lower computational cost and higher model efficiency. The proposed model employs a ۱D-SCNN architecture customized for efficient anomaly detection in IAM systems. It uses separable convolutions to handle one-dimensional input data, reducing the number of parameters and required computation. The architecture includes layers such as Leaky ReLU and ELU for activation, MaxPooling for down-sampling features, Dropout for regulating overfitting, and a Flatten layer for classification. This configuration allows the model to learn from historical user engagement data and identify anomalous behavior patterns, which are strong indicators of security threats. The study results highlight the value of advanced deep learning techniques in cybersecurity and provide a roadmap for integrating ۱D-SCNN within IAM systems to enhance security in digital environments. Finally, in experiments on an extensive data set, the proposed model outperformed by achieving an impressive accuracy of ۹۶%.

Keywords:

Identity and access management , ۱D-Separable convolutional neural networks , Leaky ReLU , ELU

Authors

Prabhadevi Cheruku

Department of Computer Science and Engineering, University College of Engineering, Osmania University, Hyderabad, India.

Vb Narasimha

Department of Computer Science and Engineering, University College of Engineering, Osmania University, Hyderabad, India.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :