Risk-Aware Suicide Detection in Social Media: A Domain-Guided Framework with Explainable LLMs
Publish place: International Journal of Web Research، Vol: 8، Issue: 3
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 77
This Paper With 14 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJWR-8-3_004
تاریخ نمایه سازی: 11 شهریور 1404
Abstract:
Nowadays, the close connection between people's lives and social media has led to the emergence of their psychological and emotional states in social media posts. This type of digital footprint creates a rich and novel entry point for early detection of suicide risk. Accurate detection of suicidal ideation is a significant challenge due to the high false negative rate and sensitivity to subtle linguistic features. Current AI-based suicide detection systems are unable to detect linguistic subtleties. These approaches do not consider domain-specific indicators and ignore the dynamic interaction of language, behaviour, and mental health. Identifying lexical and syntactic markers can be a powerful diagnostic lens for diagnosing psychological distress. To address these issues, we propose a new domain-based framework that integrates the specialized frequent-rare suicide vocabulary (FR-SL) into the fine-tuning process of large language models (LLMs). This vocabulary-aware strategy draws the model's attention to common and rare suicide-related phrases and enhances the model's ability to detect subtle signs of distress. In addition to improving performance on various metrics, the proposed framework adds interpretability for understanding and trusting the models' decisions while creating transparency. It also enables the design of a structure that is generalizable to the linguistic and mental health domains. The proposed approach offers clear improvements over baseline methods, especially in terms of reducing false negatives and general interpretability through transparent attribution.
Keywords:
Authors
Farzaneh Lashgari
NOVA-LINCS, University of Beira Interior, Covilha, Portugal.
Mehran Pourvahab
NOVA-LINCS, University of Beira Interior, Covilha, Portugal.
António Sousa
NOVA-LINCS, University of Beira Interior, Covilha, Portugal.
Anilson Monteiro
NOVA-LINCS, University of Beira Interior, Covilha, Portugal.
Sebastião Pais
NOVA-LINCS, University of Beira Interior, Covilha, Portugal; Groupe de Recherche en Informatique, GREYC, University of Gaen Normandie, France.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :