A Synergistic Framework of Deep Learning and Blockchain for Immutable and Intelligent Fraud Detection in Financial Ecosystems

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 93

This Paper With 7 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_AJMHSS-1-7_001

تاریخ نمایه سازی: 4 مهر 1404

Abstract:

The escalating sophistication of financial fraud necessitates a paradigm shift from conventional detection systems toward frameworks characterized by heightened intelligence, security, and transparency. The present study addresses a critical lacuna in the extant literature by proposing a novel, synergistic architecture that integrates Deep Learning (DL) with Blockchain technology to manifest a robust ecosystem for fraud detection. A dual-core engine is introduced, comprising: (۱) a Long Short-Term Memory (LSTM) network, optimized for the capture of temporal dependencies within transactional data, and (۲) a permissioned Hyperledger Fabric blockchain, which serves as an immutable trust layer for data integrity and the automated execution of responses via Smart Contracts. The proposed model underwent rigorous evaluation utilizing the benchmark IEEE-CIS Fraud Detection dataset. The framework achieved an exceptional F۱-Score of ۰.۹۸ and an AUC of ۰.۹۹, thereby significantly outperforming standalone DL models and traditional methodologies. It is demonstrated, crucially, that by ensuring data integrity, the blockchain layer enhances the model''s resilience against data poisoning attacks—a critical vulnerability in modern artificial intelligence systems. Performance analysis reveals a mean transaction latency of ۴۵۰ms under significant load, confirming the system''s viability for real-time deployment. This research establishes a new benchmark for secure artificial intelligence in finance, providing evidence that the fusion of DL and blockchain can create a transparent, auditable, and highly accurate defense against sophisticated financial fraud, thereby paving the way for a new generation of trustworthy computational systems in critical sectors.

Authors

Mohammad Baradaran

Assistant Professor, Department of Information Technology, NT.C., Islamic Azad University, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • ReferencesKim, T. H., & Kim, H. B. (۲۰۲۰). Data-driven security: ...
  • Hochreiter, S., & Schmidhuber, J. (۱۹۹۷). Long short-term memory. Neural ...
  • Biggio, B., & Roli, F. (۲۰۱۸). Wild patterns: Ten years ...
  • Nakamoto, S. (۲۰۰۸). Bitcoin: A peer-to-peer electronic cash system ...
  • Szabo, N. (۱۹۹۶). Smart contracts: Building blocks for digital free ...
  • Kou, Y., & Lu, C. T. (۲۰۰۴). A survey of ...
  • Abdallah, A., Maarof, M. A., & Zainal, A. (۲۰۱۶). Fraud ...
  • Fu, J., Liu, G., & Wang, H. (۲۰۲۱). A behavior-based ...
  • Liu, D., et al. (۲۰۱۸). Heterogeneous graph neural networks for ...
  • Peters, G. W., & Panayi, E. (۲۰۱۶). Understanding modern banking ...
  • Al-Ma'aitah, M. A. F. (۲۰۲۰). Blockchain-based auditing: A review of ...
  • Chen, Y., et al. (۲۰۲۰). AI and blockchain: A new ...
  • IEEE Computational Intelligence Society. (۲۰۱۹). IEEE-CIS Fraud Detection. Kaggle ...
  • نمایش کامل مراجع