Multi-objective Optimization of Single-stage High-flow Centrifugal Blower Based on Sparrow Search Algorithm-back Propagation Neural Network and Non-dominated Sorting Genetic Algorithm -Ⅱ

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 82

This Paper With 22 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JAFM-18-11_013

تاریخ نمایه سازی: 5 مهر 1404

Abstract:

In this paper, the aerodynamic performance of the single-stage high-flow centrifugal blower is enhanced and optimized through multi-objective optimization by modifying the geometry parameters of the impeller. Seven design variables, which define the angle distribution of the impeller, are employed to parameterize its geometry. The polytropic efficiency and total pressure ratio of the centrifugal blower are selected as the two primary objective functions in the optimization process. The geometric parameters of the centrifugal impeller are sampled using the Latin Hypercube Sampling (LHS) method. Based on Computational Fluid Dynamics (CFD), the sample library comprising ۶۰ sets of new geometric parameters for centrifugal impellers. The Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BPNN) is utilized to train the sample set. Subsequently, the second-generation Non-dominated Sorting Genetic Algorithm (NSGA-II) is employed for the optimization of the centrifugal blower. Compared with the reference centrifugal impeller, the optimized impeller demonstrates a higher average outlet relative Mach number and a lower absolute Mach number at the outlet, leading to improved flow uniformity at the impeller exit. The flow separation on the diffuser blades is diminished, and the vortex structure near the impeller shroud is reduced.  The polytropic efficiency and total pressure ratio of the centrifugal blower increase by up to ۲.۴۹% and ۳.۱۸%, respectively. The operational range with high polytropic efficiency is effectively expanded for the centrifugal blowers. The aforementioned findings underscore the effectiveness of the deployed multi-objective optimization techniques in refining the performance of the centrifugal blower.

Keywords:

Single-stage centrifugal blower , Multi-objective optimization , Sparrow Search Algorithm-Back Propagation Neural Network , Non-dominated Sorting Genetic Algorithm -Ⅱ , Computational fluid dynamics

Authors

C. Lei

Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang ۳۱۰۰۱۸, China

J. Zhang

Denair Energy Equipment Co., Ltd., Jiaxing, Zhejiang ۳۱۴۲۱۱, China

F. Li

General Machinery and Key Basic Component Innovation Center (Anhui) Co., Ltd, State Key Laboratory of High-end Compressor and System Technology, Hefei General Machinery Research Institute Co., Ltd., Hefei, Anhui ۲۳۰۰۳۱, China

Z. Wang

Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang ۳۱۰۰۱۸, China

H. Yang

Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang ۳۱۰۰۱۸, China

W. Zhang

Zhejiang Key Laboratory of Multiflow and Fluid Machinery,Zhejiang Sci-Tech University, Hangzhou, Zhejiang ۳۱۰۰۱۸, China

Y. Wei

General Machinery and Key Basic Component Innovation Center (Anhui) Co., Ltd, State Key Laboratory of High-end Compressor and System Technology, Hefei General Machinery Research Institute Co., Ltd., Hefei, Anhui ۲۳۰۰۳۱, China

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Afandi, A., Lusi, N., Catrawedarma, I. G. N. B., Subono, ...
  • Ekradi, K., & Madadi, A. (۲۰۲۰). Performance improvement of a ...
  • Ju, Y., Liu, Y., Jiang, W., & Zhang, C. (۲۰۲۱). ...
  • نمایش کامل مراجع