Development of upper limb gestures recognition model for hearing and speech impaired patients using convoluted neural network

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 89

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_CAND-4-2_003

تاریخ نمایه سازی: 8 مهر 1404

Abstract:

Upper limb gesture recognition plays a major role in overcoming many difficulties and inconveniences in human life, especially for individuals with speech disabilities and hearing impairment. The ability of machines to understand human activities and process their meaning can be utilized in a vast array of applications. One of the most specific applications is sign language analysis, prediction and recognition, which will aid effective communication between healthcare providers and disabled patients. This study provides a thorough state-of-the-art technique for developing upper limb gestures and sign language recognition models, predominantly based on a computational method called Deep Learning (DL). This study implements a Convolutional Neural Network (CNN), among other DL techniques, to develop a system using different stages such as data acquisition and generation, preprocessing, classification, and model building. The model was built using different stages to analyze, detect and recognize the generated (upper limb gestures data). Performance evaluation was carried out using accuracy, precision, loss function, RMSE, MSE and MAE metrics. The CNN model evaluation results are ۰.۲۹۱۳ Loss function, ۷۸.۷۳% Accuracy, ۰.۸۴۰۹ Precision, ۰.۷۳۹۶ Recall, ۰.۱۱۲۷ RMSE, ۰.۰۱۲۷ MSE and ۰.۰۲۴۵ MAE. The study, therefore, concludes that CNN can be applied to build a gesture recognition model based on its performance. Also, insights are provided in the field of gestures and sign language recognition to facilitate future research efforts and recommend the application of reinforcement learning for developing an automated embedded system.

Authors

Babatunde Salam

Department of Biomedical and Electrical, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria.

Olusola Akinde

Department of Biomedical and Electrical, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria.

Oluwadara Odeyinka

Department of Biomedical and Electrical, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria.

Samuel Enochoghene

Department of Electrical and Electronic Engineering, Lead City University, Off Oba Otudeko Avenue, Lagos-Ibadan Express Way Toll Gate Area, Oyo, Ibadan, Nigeria ۲۰۰۲۵۵.

Soliu Imran

Department of Mechanical and Mechatronics, Faculty of Engineering and Technology, First Technical University, Ibadan, Nigeria.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :