Revolutionizing Risk Management: A Markov-Bayesian Fusion for Accident Prediction and Prevention
Publish place: Journal of Mining and Environment، Vol: 16، Issue: 6
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 132
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMAE-16-6_019
تاریخ نمایه سازی: 15 مهر 1404
Abstract:
This study introduces a Hybrid Markov–Bayesian Framework for predicting and managing accident risks in high-risk industries, with a specific focus on the mining sector. The framework integrates Markov models to analyze dynamic risk transitions and Bayesian networks to infer causal relationships among key human and environmental factors. Drawing from a comprehensive dataset of mining operations, the framework evaluates variables such as age, experience, task type, and injury characteristics to predict and control accident risks. The results highlight the model's high performance, achieving an accuracy of ۸۷%, precision of ۸۵%, and an F۱-score of ۰.۸۴. This innovative approach enables real-time safety interventions and proactive risk management strategies. The findings underscore the framework's potential to improve workplace safety and serve as a scalable tool for accident prevention in other high-risk industries. Future research will focus on enhancing the framework’s adaptability and incorporating additional contextual variables for broader applicability.
Keywords:
Authors
Hosein Esmaeili
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
Mohammad Ali Afshar Kazemi
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
Reza Radfar
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
Nazanin Pilevari
Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :