Comparative Analysis of Machine Learning Regression Methods for Geometallurgical Modeling in the Sungun Copper Porphyry Deposit

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 106

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JMAE-16-6_006

تاریخ نمایه سازی: 15 مهر 1404

Abstract:

Geometallurgical modeling (GM) plays a crucial role in the mining industry, enabling a comprehensive understanding of the complex relationship between geological and metallurgical factors. This study focuses on evaluating metallurgical varibles at the Sungun Copper mine in Iran by measuring and predicting process properties, including semi-autogenous power index (SPI), recovery (Re), and concentration grade. To overcome the additivity limitations of geostatistical methods, we utilized machine learning algorithms for enhanced predictive modeling, aiming to improve decision-making and optimize mining operations in geometallurgy. The research incorporates crucial data inputs such as sample coordinates, grades, lithology, mineralization zones, and alteration to assess the accuracy and reliability of different machine learning regression methods. The Relative Standard Deviation (RSD) is highlighted as a significant metric for comparing the accuracy of predicted process properties. Evaluation metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R۲) further confirm the superiority of specific modeling methods in certain scenarios. The K-Nearest Neighbors (KNN) method exhibits superior accuracy, lower error metrics (RMSE and MAE), and a higher R۲ for modeling the SPI test. For modeling Cu grade in concentrate, Support Vector Regression (SVR) proves to be effective and reliable, outperforming the Multilayer Perceptron (MLP) method. Despite MLP's high R۲, its higher RSD suggests increased uncertainty and variability in the predictions. Therefore, SVR is considered more suitable for modeling Cu grade in concentrate. Findings optimize operations at Sungun Copper mine, improving decision-making, efficiency, and profitability.

Authors

Meysam Nikfarjam

Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran.

Ardeshir Hezarkhani

Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran

Farhad Azizafshari

National Iranian Copper Industries Co. (NICICO), Sungun Copper Mine, East-Azerbaija, Iran.

Hamidreza Golchin

National Iranian Copper Industries Co. (NICICO), Sungun Copper Mine, East-Azerbaija, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • . Deutsch, C. (۲۰۱۳). Geostatistical modelling of geometallurgical variables—Problems and ...
  • . Gordon, H. J. J. (۲۰۱۹). A mineralogical approach to ...
  • . Lishchuk, V. (۲۰۱۶). Geometallurgical programs–critical evaluation of applied methods ...
  • . Sepúlveda Escobedo, E. M. (۲۰۱۸). Quantification of uncertainty of ...
  • . Vann, J., Jackson, J., Coward, S., & Dunham, S. ...
  • . Walters, S., & Kojovic, T. (۲۰۰۶). Geometallurgical mapping and ...
  • . Williams, S. R., & Richardson, J. (۲۰۰۴). Geometallurgical Mapping: ...
  • . Lishchuk, V., Lamberg, P., & Lund, C. (۲۰۱۵). Classification ...
  • . Dominy, S., Murphy, B., & Gray, A. (۲۰۱۱). Characterisation ...
  • . Lishchuk, V., & Pettersson, M. (۲۰۲۱). The mechanisms of ...
  • . Dominy, S. C., O’Connor, L., Parbhakar-Fox, A., Glass, H. ...
  • . Garrido, M., Sepúlveda, E., Ortiz, J. M., Navarro, F., ...
  • . Hunt, J., Berry, R., Bradshaw, D., Triffett, B., & ...
  • . Hunt, J., Kojovic, T., & Berry, R. (۲۰۱۳). Estimating ...
  • . Lamberg, P. (۲۰۱۱). Particles-the bridge between geology and metallurgy. ...
  • . Sepulveda, E., Dowd, P., Xu, C., & Addo, E. ...
  • . Patnaik, S., Yang, X.-S., & Sethi, I. K. (۲۰۱۹). ...
  • . Suthaharan, S. (۲۰۱۶). Machine learning models and algorithms for ...
  • . Oliver, S., & Willingham, D. (۲۰۱۶). Maximise orebody value ...
  • . Sagar, D., Cheng, Q., & Agterberg, F. (۲۰۱۸). Handbook ...
  • . Afzal, P., Farhadi, S., Boveiri Konari, M., Shamseddin Meigooni, ...
  • . Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, ...
  • . Farhadi, S., Tatullo, S., Konari, M. B., & Afzal, ...
  • . Abbaszadeh, M., Hezarkhani, A., & Soltani-Mohammadi, S. (۲۰۱۳). An ...
  • . Ebdali, M., & Hezarkhani, A. (۲۰۲۴). A comparative study ...
  • . Saremi, M., Maghsoudi, A., Hoseinzade, Z., & Mokhtari, A. ...
  • A Comparative Analysis of Artificial Neural Network (ANN) and Gene Expression Programming (GEP) Data-driven Models for Prospecting Porphyry Cu Mineralization; Case Study of Shahr-e-Babak Area, Kerman Province, SE Iran [مقاله ژورنالی]
  • . Rajabinasab, B., & Asghari, O. (۲۰۱۹). Geometallurgical domaining by ...
  • . Lishchuk, V., Lund, C., & Ghorbani, Y. (۲۰۱۹). Evaluation ...
  • . Coward, S., Vann, J., Dunham, S., & Stewart, M. ...
  • . Carrasco, P., Chilès, J.-P., & Séguret, S. A. (۲۰۰۸). ...
  • . Keeney, L., & Walters, S. (۲۰۱۱). A methodology for ...
  • . Ameh.mxen, P. (۲۰۰۳). The application of the SAG POWER ...
  • . Starkey, J., & Dobby, G. (۱۹۹۶). Application of the ...
  • . Bahrami, A., Ghorbani, Y., Sharif, J. A., Kazemi, F., ...
  • . Amankwaa-Kyeremeh, B., McCamley, C., Zanin, M., Greet, C., Ehrig, ...
  • . Boisvert, J. B., Rossi, M. E., Ehrig, K., & ...
  • . Macmillan, E., Ehrig, K., Liebezeit, V., Kittler, P., Lower, ...
  • . Bishop, C. M., & Nasrabadi, N. M. (۲۰۰۶). Pattern ...
  • . Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, ...
  • . Meng, M., & Zhao, C. (۲۰۱۵). Application of support ...
  • . Breiman, L. (۲۰۰۱). Random forests. Machine learning, ۴۵, ۵-۳۲ ...
  • . Murphy, K. P. (۲۰۱۲). Machine learning: a probabilistic perspective: ...
  • . Hezarkhani, A., Williams-Jones, A., & Gammons, C. (۱۹۹۹). Factors ...
  • . Hezarkhani, A. (۱۹۹۷). Physicochemical controls on alteration and copper ...
  • . Calagari, A. A. (۲۰۰۳). Stable isotope (S, O, H ...
  • . Asghari, O., & Hezarkhani, A. (۲۰۰۸). Appling discriminant analysis ...
  • . Hezarkhani, A., & Williams-Jones, A. E. (۱۹۹۸). Controls of ...
  • . Nikfarjam, M., Hezarkhani, A., & Aziz-Afshari, F. (۲۰۲۲). Geological ...
  • . Mery, N., et al., Geostatistical modeling of the geological ...
  • . David, D. (۲۰۱۳). Geometallurgical guidelines for miners, geologists and ...
  • . Grubbs, F. E. (۱۹۶۹). Procedures for Detecting Outlying Observations ...
  • نمایش کامل مراجع