Enhancing experimental efficiency in uncertain data: A comparative analysis of neutrosophic and classical latin square designs
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 80
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_RIEJ-14-2_007
تاریخ نمایه سازی: 27 مهر 1404
Abstract:
This research investigates the relative efficiency between Neutrosophic Latin Square Design (NLSD) and Classical Latin Square Design (CLSD), with a particular focus on their use in situations where data is uncertain and ambiguous. Although CLSD is a classic experiment designed for systematic error control, its utility is limited in fields like agriculture and behavioral sciences due to its performance bottleneck regarding data imprecision. The NLSD can relatively easily be extended to incorporate neutrosophic logic to address these challenges, making it a more powerful tool for modeling uncertainty. In this paper, a systematic efficiency evaluation of NLSD against CLSD is performed for inconsistent data. It is found that the NLSD enables significant improvements in experimental efficiency while providing clearer inferences regarding treatment effects and supporting more reliable conclusions. Despite these limitations, these benefits establish NLSD as a promising candidate for overcoming environmental uncertainties, and these observations hold significant potential to further the advancement of experimental designs. The results demonstrate that NLSD conveys a ۵۵ % chance to enhance efficiency relative to LSD, which is especially important in processes that must attain maximum resource utilization and high experimental efficiency.
Keywords:
Neutrosophic Latin Square Design , Neutrosophic statistics , Data Uncertainty , Experimental Design Efficiency , Neutrosophic Logic
Authors
Srishti Kumari
Department of Statisitcs and Data Science, CHRIST (Deemed to be University), Bangalore, India.
Azarudheen Shahabudheen
Department of Statisitcs and Data Science, CHRIST (Deemed to be University), Bangalore, India.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :