Deep Learning-Based Decision Fusion for Breast Cancer Classification Using Multi-Source Medical Data

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 86

This Paper With 23 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_COAM-10-2_002

تاریخ نمایه سازی: 28 مهر 1404

Abstract:

Breast cancer is one of the most prevalent cancers among women and remains a leading cause of cancer-related mortality‎. ‎Mammography is the primary imaging modality for the early detection of breast tumors‎. ‎Providing timely and highly accurate diagnoses is a top priority for physicians and healthcare providers in the management of critical illnesses‎. ‎This paper presents a Medical Decision Support System (MDSS) that utilizes Yager’s rule of combination to classify and diagnose breast cancer patients by integrating information from multiple data sources‎. ‎Medical text reports (MTR) and key feature vectors extracted from electronic health records (EHR) were reduced using Principal Component Analysis (PCA) and then classified using Convolutional Neural Networks (CNN)‎, ‎Multi-Layer Perceptrons (MLP)‎, ‎and Support Vector Machines (SVM)‎. ‎Medical images were preprocessed and classified using a U-Net model‎. ‎A novel decision fusion algorithm‎, ‎called weighted Yager‎, ‎was introduced to determine the Breast Imaging-Reporting and Data System (BI-RADS) categories‎, ‎taking into account the accuracy of each class in each classifier as evidence‎. ‎The performance of the proposed system was evaluated based on standard metrics including accuracy‎, ‎sensitivity‎, ‎specificity‎, ‎positive predictive value (PPV)‎, ‎negative predictive value (NPV)‎, ‎and F۱-score‎. ‎The proposed system achieved the highest accuracy of ۹۶.۲۳\%‎, ‎outperforming individual classifiers (CNN‎: ‎۸۶.۳۷%‎, ‎MLP‎: ‎۹۲.۱۱%‎, ‎SVM‎: ‎۸۷.۹۲%‎, ‎U-Net‎: ‎۹۲.۹۷%‎, ‎and Yager‎: ‎۹۳.۴۹%)‎. ‎The weighted Yager fusion method yielded the best performance with an accuracy of ۹۶.۲۳%‎, ‎sensitivity of ۹۸.۸۰%‎, ‎specificity of ۸۵.۹۰%‎, ‎PPV of ۸۶.۲۱%‎, ‎NPV of ۹۷.۸۲%‎, ‎and F۱-score of ۸۵.۸۷%‎. ‎These findings demonstrate that integrating decisions from multiple classifiers significantly improves diagnostic accuracy and robustness‎.

Keywords:

Medical decision support system‎ , ‎Text mining‎ , ‎BI-RADS‎ , ‎Deep learning

Authors

Mohammad Zahaby

Department of Computer engineering and information technology‎, ‎Payame Noor University‎, Tehran, ‎Iran.

Mostafa Boroumandzadeh

Department of Computer engineering and information technology‎, ‎Payame Noor University‎, Tehran, ‎Iran.

Iman Makhdoom

Department of Statistics‎, ‎Payame Noor University‎, Tehran, ‎Iran‎.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Ahmed, S. (۲۰۲۳). “A software framework for predicting the maize ...
  • Akram, M., Shahzadi, G. (۲۰۲۱). “A hybrid decision-making model under ...
  • Alesheykh, R. (۲۰۱۶). “Comparative analysis of machine learning algorithms with ...
  • Alhasani, A.T., Alkattan, H., Subhi, A.A., El-Kenawy, El.S.M., Eid, M.M. ...
  • Balasubramaniam, S., Velmurugan, Y., Jaganathan, D., Dhanasekaran, S.J.D. (۲۰۲۳). “A ...
  • Batista, G.E., Prati, R.C., Monard, M.C. (۲۰۰۴). “A study of ...
  • Boyer, B., Canale, S., Arfi-Rouche, J., Monzani, Q., Khaled, W., ...
  • Borkowski, K., Rossi, C., Ciritsis, A., Marcon, M., Hejduk, P., ...
  • Boroumandzadeh, M., Parvinnia, E., Boostani, R., Sefidbakht, S. (۲۰۲۱). “A ...
  • Boumaraf, S., Liu, X., Ferkous, C., Ma, X. (۲۰۲۰). “A ...
  • Bozkurt, S., Gimenez, F., Burnside, E.S., Gulkesen, K.H., Rubin, D.L. ...
  • Carlsson, C., Brunelli, M., Mezei, J. (۲۰۱۲). “Decision making with ...
  • Castro, S.M., Tseytlin, E., Medvedeva, O., Mitchell, K., Visweswaran, Sh., ...
  • Chang, C.-C., Lin, C.-J. (۲۰۱۱). “LIBSVM: A library for support ...
  • Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (۲۰۰۲). “Smote: ...
  • Cochran, W.G. (۱۹۷۷). “Sampling techniques”, ۳rd Edition, John Wiley & ...
  • Destrempes, F., Trop, I., Allard, L., Chayer, B., Garcia-Duitama, J., ...
  • Esmaeili, M., Ayyoubzadeh, S.M., Ahmadinejad, N., Ghazisaeedi, M., Nahvijou, A., ...
  • Fogliatto, F.S., Anzanello, M.J., Soares, F., Brust-Renck, P.G. (۲۰۱۹). “Decision ...
  • Gao, H., Aiello Bowles, E.J., Carrell, D., Buist, D.S.M. (۲۰۱۵). ...
  • Ghazalnaz Sharifonnasabi, F., Makhdoom, I. (۲۰۲۲). “Comparison of deep learning ...
  • Gupta, A., Banerjee, I., Rubin, D.L. (۲۰۱۸). “Automatic information extraction ...
  • Hossaina, Sh., Azamb, S., Montahac, S., Karimb, A., Sultana Chowaa, ...
  • Jais, I.K.M., Ismail, A.R., Nisa, S.Q. (۲۰۱۹). “Adam optimization algorithm ...
  • Japkowicz, N., Stephen, S. (۲۰۰۲). “The class imbalance problem: A ...
  • Jesneck, J.L., Nolte, L.W., Baker, J.A., Floyd, C.E., Lo, J.Y. ...
  • Jia, W., Sun, M., Lian, J., Hou, S. (۲۰۲۲). “Feature ...
  • Li, B., Drozd, A., Guo, Y., Liu, T., Matsuoka, S., ...
  • Long, J., Shelhamer, E., Darrell, T. (۲۰۱۵). “Fully convolutional networks ...
  • Manalı, D., Demirel, H., Eleyan, A. (۲۰۲۴). “Deep learning based ...
  • Nal Kalchbrenner, E.G., Blunsom, Ph. (۲۰۱۴). “A convolutional neural network ...
  • Oh, S., Lee, M.S., Zhang, B.T. (۲۰۱۱). “Ensemble learning with ...
  • Patro, S.G.K., Kumar Sahu, K. (۲۰۱۵). “Normalization: A preprocessing stage”, ...
  • Percha, B., Nassif, H., Lipson, J., Burnside, E., Rubin, D. ...
  • Punn, N.S., Agarwal, S. (۲۰۲۲). “Modality specific U-Net variants for ...
  • Ronneberger, O., Fischer, P., Brox, T. (۲۰۱۵). “U-Net: Convolutional networks ...
  • Sefidbakht, S., Jalli, R., Izadpanah, E. (۲۰۱۵). “Adherence of academic ...
  • Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.J.C.C.J.C. (۲۰۲۳). “Cancer ...
  • Sippo, D.A., Warden, G.I., Andriole, K.P., Lacson, R., Ikuta, I., ...
  • Tang, F., Adam, L., Si, B. (۲۰۱۸). “Group feature selection ...
  • Xu, Q., Zhang, M., Gu, Z., Pan, G. (۲۰۱۹). “Overfitting ...
  • Yager, R.R. (۱۹۸۸). “On ordered weighted averaging aggregation operators in ...
  • Yan, R., Zhang, F., Rao, X., Lv, Zh., Li, J., ...
  • Zahaby, M., Makhdoom, I. (۲۰۲۵). “Enhanced decision support system for ...
  • Zahaby, M., Shiri, M.E., Haj Seyed Javadi, H., Broumandzadeh, M. ...
  • Zahaby, M., Shiri, M.E., Haj Seyed Javadi, H., Boroumandzadeh, M. ...
  • Zhang, X. et al. (۲۰۱۹). “Extracting comprehensive clinical information for ...
  • نمایش کامل مراجع