Deep Learning-Based Decision Fusion for Breast Cancer Classification Using Multi-Source Medical Data
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 86
This Paper With 23 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COAM-10-2_002
تاریخ نمایه سازی: 28 مهر 1404
Abstract:
Breast cancer is one of the most prevalent cancers among women and remains a leading cause of cancer-related mortality. Mammography is the primary imaging modality for the early detection of breast tumors. Providing timely and highly accurate diagnoses is a top priority for physicians and healthcare providers in the management of critical illnesses. This paper presents a Medical Decision Support System (MDSS) that utilizes Yager’s rule of combination to classify and diagnose breast cancer patients by integrating information from multiple data sources. Medical text reports (MTR) and key feature vectors extracted from electronic health records (EHR) were reduced using Principal Component Analysis (PCA) and then classified using Convolutional Neural Networks (CNN), Multi-Layer Perceptrons (MLP), and Support Vector Machines (SVM). Medical images were preprocessed and classified using a U-Net model. A novel decision fusion algorithm, called weighted Yager, was introduced to determine the Breast Imaging-Reporting and Data System (BI-RADS) categories, taking into account the accuracy of each class in each classifier as evidence. The performance of the proposed system was evaluated based on standard metrics including accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F۱-score. The proposed system achieved the highest accuracy of ۹۶.۲۳\%, outperforming individual classifiers (CNN: ۸۶.۳۷%, MLP: ۹۲.۱۱%, SVM: ۸۷.۹۲%, U-Net: ۹۲.۹۷%, and Yager: ۹۳.۴۹%). The weighted Yager fusion method yielded the best performance with an accuracy of ۹۶.۲۳%, sensitivity of ۹۸.۸۰%, specificity of ۸۵.۹۰%, PPV of ۸۶.۲۱%, NPV of ۹۷.۸۲%, and F۱-score of ۸۵.۸۷%. These findings demonstrate that integrating decisions from multiple classifiers significantly improves diagnostic accuracy and robustness.
Keywords:
Authors
Mohammad Zahaby
Department of Computer engineering and information technology, Payame Noor University, Tehran, Iran.
Mostafa Boroumandzadeh
Department of Computer engineering and information technology, Payame Noor University, Tehran, Iran.
Iman Makhdoom
Department of Statistics, Payame Noor University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :