Influence of Composition and Process Parameters on Aluminide Coatings Thickness: An Explainable Machine Learning-Assisted Approach
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 60
This Paper With 13 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMSEI-22-3_009
تاریخ نمایه سازی: 30 مهر 1404
Abstract:
Aluminide coatings are widely used in high-temperature applications due to their excellent corrosion resistance and thermal stability. However, optimizing their composition and thickness is crucial for enhancing performance under varying operational conditions. This study investigates the optimization of aluminide coatings through a data-driven approach, aiming to predict the coating thickness based on various composition and process parameters. A comparative analysis of six machine learning models was conducted, with the k-nearest neighbors regressor (KNNR) demonstrating the highest predictive accuracy, yielding a coefficient of determination R² of ۰.۷۸, a root mean square error (RMSE) of ۱۸.۰۲ µm, and mean absolute error (MAE) of ۱۴.۴۲. The study incorporates SHAP (Shapley Additive Explanations) analysis to identify the most influential factors in coating thickness prediction. The results indicate that aluminum content (Al), ammonium chloride content (NH۴Cl), and silicon content (Si) significantly impact the coating thickness, with higher Al and Si concentrations leading to thicker coatings. Zirconia (ZrO۲) content was found to decrease thickness due to competitive reactions that hinder Al deposition. Furthermore, the level of activity in the aluminizing process plays a crucial role, with high-activity processes yielding thicker coatings due to faster Al diffusion. The pack cementation method, in particular, produced the thickest coatings, followed by gas-phase and out-of-pack methods. These findings emphasize the importance of optimizing composition and processing conditions to achieve durable, high-performance aluminide coatings for high-temperature applications.
Keywords:
Authors
ali azari beni
School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Narmak, Iran
Saeed Rastegari
School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Narmak, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :