Adaptive Ensemble Thresholding for OOD Intent Detection

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 53

This Paper With 15 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJWR-8-4_003

تاریخ نمایه سازی: 3 آبان 1404

Abstract:

Out-of-domain intent detection in natural language understanding systems faces significant challenges from suboptimal threshold selection and signal degradation through inappropriate normalization techniques. This paper presents an adaptive ensemble thresholding framework that substantially extends our previous conference work by addressing fundamental limitations in existing variational autoencoder-based detection methods. Our approach combines reconstruction loss from variational autoencoders with classifier confidence scores to create a unified detection signal that captures both semantic deviation and prediction uncertainty. The framework incorporates a novel smart scaling strategy that preserves natural separation ratios between in-domain and out-of-domain samples, preventing the signal destruction caused by standard normalization approaches. Through systematic parameter optimization using grid search techniques, the method adaptively determines optimal ensemble weights and threshold selection strategies tailored to specific dataset characteristics. We evaluate our framework across multiple datasets with varying semantic complexity and domain structures, demonstrating consistent performance improvements over baseline variational autoencoder approaches and recent state-of-the-art methods. Compared to our previous VAE-based approach, the framework demonstrates an average performance gain of ۳.۱۵ percentage points across all evaluation metrics. Our analysis reveals that ensemble scaling strategy significantly impacts detection performance, with proper signal preservation being more critical than sophisticated threshold selection methods. This work provides a principled approach to adaptive ensemble learning for out-of-domain detection, offering a robust solution that generalizes effectively across diverse datasets and linguistic contexts including low-resource languages like Persian.

Keywords:

natural language understanding , Out-of-Domain Intent Detection – Adaptive Thresholding – Ensemble Learning

Authors

Masoud Akbari

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran;

Ali Mohades

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran;

M.Hassan Shirali-Shahreza

Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran;

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • A. Gupta, P. Zhang, G. Lalwani and M. Diab, “Context-aware ...
  • J. Yang, K. Zhou, Y. Li and Z. Liu, “Generalized ...
  • M. Guarrera, B. Jin, T.-W. Lin, M. A. Zuluaga, Y. ...
  • F. Ataeiasad, D. Elizondo, S. Calderón Ramírez, S. Greenfield and ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۳۰۹.۰۲۰۸۴T. Denouden, R. Salay, K. Czarnecki, V. Abdelzad, B. Phan ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۱۸۱۲.۰۲۷۶۵H. Torabi, S. L. Mirtaheri and S. Greco, “Practical autoencoder ...
  • M. Akbari, A. Mohades and M. H. Shirali-Shahreza, “A Hybrid ...
  • Y. Zhou, “Rethinking Reconstruction Autoencoder-Based Out-of-Distribution Detection,” in Proceedings of ...
  • S. Pei, “Image background serves as good proxy for out-of-distribution ...
  • https://doi.org/۱۰.۴۸۵۵۰/arXiv.۲۳۰۷.۰۰۵۱۹Z. Liu, J. P. Zhou, Y. Wang and K. Q. ...
  • Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong ...
  • J. An and S. Cho, “Variational autoencoder based anomaly detection ...
  • Y. Zheng, G. Chen and M. Huang, “Out-of-Domain Detection for ...
  • T. L. Molloy, J. J. Ford and L. Mejias, “Adaptive ...
  • B. Magaz, A. Belouchrani and M. Hamadouche, ”Automatic Threshold Selection ...
  • K. Fang, Q. Tao, X. Huang and J. Yang, “Revisiting ...
  • L. E. Hogeweg, R. Gangireddy, D. Brunink, V. J. Kalkman, ...
  • E. A. Abyaneh, R. Zolfaghari and A. A. Abyaneh, “User ...
  • M. Farahani, M. Gharachorloo, M. Farahani and M. Manthouri, “ParsBERT: ...
  • R. Zadkamali, S. Momtazi and H. Zeinali, “Intent detection and ...
  • T.-E. Lin and H. Xu, “Deep Unknown Intent Detection with ...
  • C. T. Hemphill, J. J. Godfrey and G. R. Doddington, ...
  • A. Coucke et al., “Snips voice platform: an embedded spoken ...
  • نمایش کامل مراجع