Comparison of optimizers (Adam, RMSprop, SGD and Adagrad) in a neural network for mineral resource classification: a case study in a copper deposit in Peru
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 80
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-59-3_011
تاریخ نمایه سازی: 3 آبان 1404
Abstract:
TThis study has compared the performance of various optimizers in mineral resource classification using a multilayer perceptron artificial neural network (MLP) applied to a copper deposit in Peru. The optimizers Adam (Adaptive moment estimation), RMSprop (Root mean square propagation), SGD (Stochastic gradient descent), and Adagrad (Adaptive gradient algorithm) were evaluated to assess their impact on the spatial continuity of block classification. A total of ۳۱۸,۴۴۳ blocks were estimated using ordinary kriging, based on key variables including estimated grade, kriging variance, average sample distance, number of composited samples, the kriging Lagrangian, and geological confidence. The methodology involved a mixed multivariable block-by-block clustering using the k-prototypes algorithm, followed by block smoothing through an artificial neural network with different optimizers. Results show that the Adam optimizer achieved the highest overall accuracy (۹۳%), outperforming both RMSprop and SGD (۹۲%), as well as Adagrad (۹۰%). In addition, Adam yielded a more homogeneous classification of mineral resources. It categorized ۷۵,۸۶۹ blocks as measured (۱,۳۹۵.۹۹ Mt total tonnage, ۵.۴۰ Mt fine copper), ۱۲۰,۰۳۹ as indicated (۲,۲۰۸.۷۲ Mt and ۶.۵۶ Mt fine copper), and ۱۲۲,۵۳۵ as inferred (۲,۲۵۴.۶۴ Mt and ۶.۲۹ Mt fine copper). In conclusion, the model trained with the Adam optimizer demonstrated superior precision and stability in mineral resource classification, effectively mitigating the “spotty dog effect” and improving the geological coherence of the block model
Keywords:
Authors
Marco Cotrina-Teatino
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú,
Jairo Marquina-Araujo
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú,
Jose Mamani-Quispe
Faculty of Chemical Engineering, National University of the Altiplano, Puno, Perú.
Solio Arango-Retamozo
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú,
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :