Breast mass detection with nonlinear model of thermography images
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 71
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CSTE-2-3_003
تاریخ نمایه سازی: 4 آبان 1404
Abstract:
Detecting a breast mass is a common and stressful event for women. Although most breast masses are benign, the risk of malignancy highlights the importance of appropriate screening. Different imaging methods have different precisions and accuracies, so choosing an appropriate imaging method, especially for women with dense breast tissue, is very important. Since vascular structure regional temperatures differ between normal and abnormal tissues, thermography can detect masses earlier than conventional imaging methods.۲۳۷ cases including ۱۵۲ healthy individuals and ۸۵ cases with breast masses examined in this study. The raw recorded images of these cases are gray-levels which are given to a nonlinear transform to become colorful which increase the thermal contrast. Then these color scaled images are given to convolutional neural networks. The used networks in this research is AlexNet and GoogLeNet. The extracted features are given to different classifiers as input. The used classifiers in this study are KNN, SVM and NB. The best result was achieved when GoogLeNet and SVM were used together. The results of this study have remarkable accuracy and sensitivity which are ۹۵.۸% and ۱۰۰%, respectively. The developed system combining nonlinear color scaling and deep learning shows potential as an effective tool for early breast screening.
Keywords:
Authors
Faezeh Roshanravan Yazdi
Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
Mohammad Mahdi Khalilzadeh
Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
Faramarz Firouzi
Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
Mahdi Azarnoosh
Department of Biomedical Engineering, Ma.C., Islamic Azad University, Mashhad, Iran
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :