Deep Learning Model for Pneumothorax Detection in Chest Radiographs: A Multicenter Retrospective Cross-Sectional Study

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 75

This Paper With 12 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_MEDIA-16-3_006

تاریخ نمایه سازی: 5 آبان 1404

Abstract:

Background: Pneumothorax is a common clinical condition characterized by the presence of air within the pleural space, occurring in about half of chest trauma cases. Its clinical presentation ranges from asymptomatic cases to severe conditions causing hemodynamic instability or death. Deep learning models offer transformative potential for both clinical diagnosis and medical education through automated detection and interactive training tools. This study sought to evaluate deep learning models for detecting pneumothorax in Chest Radiographs (CXRs), assessing their diagnostic accuracy and potential to enhance medical education.Methods: This retrospective cross-sectional study was conducted between February ۲۰۲۲ and September ۲۰۲۳ to assess the performance of four deep learning models for pneumothorax detection: Mask Region-based Convolutional Neural Network (Mask R-CNN), Deep Labelling version ۳ (DeepLabv۳), You Only Look Once version ۸ (YOLOv۸), and the U-shaped CNN model (U-Net). The evaluation was conducted using ۲۰,۰۰۰ chest X-ray images sourced from three hospitals in Iran, along with three open source datasets, including PTX-۴۹۸, PTX-۲۲۷, and SIIM-ACR-Pneumothorax. Images were labeled by consensus from two radiologists and two traumatologists. Rather than applying a conventional percentage-based split, a tiered data strategy was applied: internal datasets for training and validation, and external datasets (CheXpert and NIH) for independent testing to verify generalizability. Each model was trained to detect pneumothorax by extracting features and performing segmentation. Performance was evaluated using sensitivity, specificity, precision, recall, and F۱-score. The outputs were analyzed for integration into virtual learning platforms to train medical students in diagnosing pneumothorax.Results: The YOLOv۸ algorithm showed the best performance for detecting and localizing pneumothorax, achieving an F۱ score of ۰.۶۸. The final model’s precision was ۰.۷۹, and a recall of ۰.۶۰, and it worked best on chest X-ray images with ۱۰۲۴x۱۰۲۴ resolution, particularly showing greater accuracy in identifying larger pneumothoraces.Conclusion: Integration of YOLOv۸ into medical education has the potential to improve diagnostic training via interactive AI-based simulations. However, challenges remain in detecting smaller pneumothoraces, highlighting the need for further optimization.

Authors

Reza Ibrahimi

Department of Emergency Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Mohammad Reza Azami Aval

Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran, Iran

Jalal Kargar

Department of Radiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran

Seyed Zia Hejripour

Department of Emergency Medicine, Be-sat Hospital, AJA University of Medical Sciences, Tehran, Iran

Behrang Rezvani Kakhki

Department of Emergency Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Reza Gerami

Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran, Iran

Hojat Ebrahiminik

Department of Interventional Radiology and Radiation Sciences Research Center, Aja University of Medical Sciences, Tehran, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Swierzy M, Helmig M, Ismail M, Rückert J, Walles T, ...
  • DeMaio A, Semaan R. Management of Pneumothorax. Clin Chest Med. ...
  • Tran J, Haussner W, Shah K. Traumatic Pneumothorax: A Review ...
  • Ince A, Ozucelik DN, Avci A, Nizam O, Dogan H, ...
  • Alghnam S, Aldahnim MH, Aldebasi MH, Towhari JA, Alghamdi AS, ...
  • Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, ...
  • Thian YL, Ng D, Hallinan J, Jagmohan P, Sia SY, ...
  • Lee KL, Graham CA, Yeung JH, Ahuja AT, Rainer TH. ...
  • Tian Y, Wang J, Yang W, Wang J, Qian D. ...
  • Li X, Thrall JH, Digumarthy SR, Kalra MK, Pandharipande PV, ...
  • Wang Q, Liu Q, Luo G, Liu Z, Huang J, ...
  • Jensen L, Meyer C. Reducing errors in portable chest radiography. ...
  • Salam A, Andono PN, Purwanto, Soeleman MA, Sidiq M, Alzami ...
  • Chassagnon G, Vakalopoulou M, Paragios N, Revel MP. Artificial intelligence ...
  • Do S, Song KD, Chung JW. Basics of Deep Learning: ...
  • Xie Y, Zhu B, Jiang Y, Zhao B, Yu H. ...
  • Hao S, Li X, Peng W, Fan Z, Ji Z, ...
  • Kitamura G, Deible C. Retraining an open-source pneumothorax detecting machine ...
  • Hwang EJ, Hong JH, Lee KH, Kim JI, Nam JG, ...
  • D'Souza R N, Huang PY, Yeh FC. Structural Analysis and ...
  • Sabottke CF, Spieler BM. The Effect of Image Resolution on ...
  • Suhaimi MS, Zainuddin K, Ghazali MD, Marzukhi F, Samad AM, ...
  • Hoechter DJ, Speck E, Siegl D, Laven H, Zwissler B, ...
  • Zarogoulidis P, Kioumis I, Pitsiou G, Porpodis K, Lampaki S, ...
  • Feng S, Liu Q, Patel A, Bazai SU, Jin CK, ...
  • Rudie JD, Duda J, Duong MT, Chen P-H, Xie L, ...
  • Cheng CT, Chen CC, Fu CY, Chaou CH, Wu YT, ...
  • Wang M, Sun Z, Jia M, Wang Y, Wang H, ...
  • Blumstein G, Zukotynski B, Cevallos N, Ishmael C, Zoller S, ...
  • Park S, Lee SM, Kim N, Choe J, Cho Y, ...
  • Tseng WC, Wang YC, Chen WC, Lin KP. Development of ...
  • Kim D, Lee JH, Kim SW, Hong JM, Kim SJ, ...
  • نمایش کامل مراجع