Gray Squirrel Foraging Algorithm for Function Optimization

Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 47

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_IJE-39-7_009

تاریخ نمایه سازی: 10 آبان 1404

Abstract:

In this study, a novel and efficient metaheuristic algorithm inspired by the foraging behavior of gray squirrels is proposed to tackle complex optimization problems. Similar to many nature-inspired algorithms, the Gray Squirrel Foraging Algorithm (GSFA) is population-based and explores the search space using a set of initial solutions, gradually converging toward the global optimum. The search mechanism is modeled on the natural behavior of squirrels in locating and retrieving hidden food sources and has been implemented in MATLAB. GSFA employs three distinct search strategies to balance exploration and exploitation: (۱) directional search around prominent elements such as large trees that serve as food storage sites, (۲) triangulation-based search utilizing environmental landmarks such as bushes and rocks, and (۳) random search guided by olfactory cues. This multi-strategy framework enhances global search capabilities and prevents premature convergence. Moreover, candidate solutions are continuously evaluated based on their quality, allowing even weaker solutions a chance to improve and contribute to the overall search process. This feature reduces computational cost and accelerates convergence. The proposed algorithm has been evaluated on eight standard benchmark functions and demonstrated superior performance compared to several well-known metaheuristic algorithms. Due to its adaptive mechanism and computational efficiency, GSFA holds significant potential for application in a wide range of real-world optimization problems, particularly in the field of engineering.

Authors

B. Amani

Faculty of Technical and Engineering, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

M. Nouri

Robotics & Soft Technologies Research Centre, Tabriz Branch, Islamic Azad University, Tabriz, Iran

S. A. Mousavi Ghasemi

Faculty of Technical and Engineering, Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Mitchell M. An introduction to genetic algorithms: MIT press; ۱۹۹۸ ...
  • Sivanandam S, Deepa S, Sivanandam S, Deepa S. Genetic algorithms: ...
  • Dorigo M, Blum C. Ant colony optimization theory: A survey. ...
  • Rajabioun R. Cuckoo optimization algorithm. Applied soft computing. ۲۰۱۱;۱۱(۸):۵۵۰۸-۱۸. DOI:۱۰.۱۰۱۶/j.asoc.۲۰۱۱.۰۵.۰۰۸Yang ...
  • Yang X-S. Firefly algorithm, stochastic test functions and design optimisation. ...
  • Yang X-S, He X. Bat algorithm: literature review and applications. ...
  • Yang X-S, editor Firefly algorithms for multimodal optimization. International symposium ...
  • Cross SP. Behavioral aspects of western gray squirrel ecology: The ...
  • Bland Mea. Daily And Seasonal Activity Patterns In The Eastern ...
  • Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances ...
  • نمایش کامل مراجع