Empirical Analysis of Factors Affecting Financial Distress at Companies: An Emphasis on Data Mining Models
Publish place: Iranian Economic Review Journal، Vol: 29، Issue: 3
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 74
This Paper With 31 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IER-29-3_007
تاریخ نمایه سازی: 11 آبان 1404
Abstract:
This study aimed to analyze the effects of macroeconomic factors (e.g., inflation, economic growth, currency exchange rate, and market competitiveness), managerial characteristics (e.g., ability, optimism, entrenchment, and myopia), and corporate governance (e.g., institutional shareholders, ownership concentration, number of shareholders, and managerial independence) on the financial distress risks of companies listed in the Tehran Stock Exchange. For this purpose, data mining models (e.g., Artificial neural networks and decision trees) were used along with the regression method to analyze a sample of ۱۴۰ TSE-listed companies within the ۲۰۰۷–۲۰۲۰ period. The research results indicated that macroeconomic factors (i.e., external factors) and managerial characteristics (i.e., internal factors) were identified as the first and second most effective factors in the financial distress risk of companies, respectively. However, corporate governance variables were identified as the least effective factors. According to the results of ranking the effects of research variables on financial distress risk, the most effective variables were identified as market competitiveness, managerial myopia, and inflation.
Keywords:
Authors
Mohsen Lotfi
Department of Accounting, Faculty of Industrial Engineering and Management, Shahrood University of Technology, Shahrood, Iran.
Seyed Hosein Seyedi
Department of Accounting, Faculty of Industrial Engineering and Management, Shahrood University of Technology, Shahrood, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :