Assessment of Climate Change Impacts on the Hydrological Behavior of the Sarbaz River Basin Using CMIP۶ Climate Models
Publish place: Journal of Hydraulic and Water Engineering، Vol: 2، Issue: 2
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 50
This Paper With 20 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JHWE-2-2_004
تاریخ نمایه سازی: 28 آبان 1404
Abstract:
This study introduces a framework for assessing climate change and flow conditions by integrating the latest climate simulations from the CMIP۶ project (HadGEM۳-GC۳۱-LL model) with the Soil and Water Assessment Tool (SWAT), while also evaluating the influence of different climate model resolutions. A total of ۶۶ hydrological and environmental flow indicators from the Indicators of Hydrologic Alteration (IHA) were calculated to assess future extreme flows in the Sarbaz River Basin, located in Sistan Province, which is particularly vulnerable to flooding. Results indicate that by the ۲۰۳۰–۲۰۵۰ period, compared to the baseline period of ۱۹۹۰–۲۰۱۹, annual precipitation, streamflow, and maximum and minimum temperatures are projected to increase by ۶.۹%, ۹.۹%, ۰.۸°C, and ۰.۹°C, respectively. Monthly precipitation and streamflow are expected to rise especially during the monsoon season (June–September) and early wet periods (December). The magnitude of minimum ۱-, ۳-, ۷-, ۳۰-, and ۹۰-day flows is projected to increase by ۷.۲% to ۸.۲%, while peak flows could rise by ۱۰.۴% to ۲۸.۴%. Finally, significant differences were observed between high- and low-resolution climate models, with high-resolution models predicting an ۱۱.۸% increase in average monthly flows during November–January, compared to just ۳.۲% in low-resolution models.
Keywords:
Authors
Amirhossein Shahrakizad
۱ Department of Civil Engineering and Water Resources Management, University of Sistan and Baluchistan, Zahedan, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :