Application of Machine Learning Models in Forecasting Prolonged Length of Stay After Cancer Surgery Using Electronic Health Records
Publish place: InfoScience Trends، Vol: 2، Issue: 5
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 65
This Paper With 10 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-5_001
تاریخ نمایه سازی: 4 آذر 1404
Abstract:
Postoperative length of stay serves as a crucial metric for managing medical resources and offers an indi-rect measure of surgical complication rates following cancer surgery. In recent years, machine learning techniques have been increasingly utilized for complex medical outcome prediction by leveraging large volumes of clinical data. In this study, we employed machine learning models to forecast prolonged length of stay after cancer surgery using de-identified clinical data from The Cancer Genome Atlas (TCGA), a publicly accessible database. We analyzed records from approximately ۳,۵۰۰ patients who underwent primary surgeries for five types of cancer-stomach, breast, colon, thyroid, and lung. The available clinical variables included surgical details, cancer characteristics, comorbidities, and laboratory assessments. Support vector machine, random forest, and logistic regression models were developed to predict pro-longed postoperative length of stay. The results show that machine learning models can predict prolonged hospital stay for breast and stomach cancers (AUC >۰.۸۵) but perform poorly for colon and lung cancers (AUC <۰.۸), highlighting limitations in generalizability. These findings highlight both the potential and the limitations of using public genomic and clinical datasets for perioperative risk stratification and resource allocation in cancer care.
Keywords:
Authors
Sajad Samadi Avansar
Health Information Technology Department, Urmia University of Medical Sciences, Urmia, Iran.
Shoeib Nouri
Department of Surgery, Babol University of Medical Sciences, Babol, Mazandaran, Iran.
Mohamadhosein Hoseinzade
Department of Surgery, Babol University of Medical Sciences, Babol, Mazandaran, Iran.
Reza Mortazavi
Department of Surgery, Babol University of Medical Sciences, Babol, Mazandaran, Iran.
Meysam Abdollahzadeh Sangrody
Department of Surgery, Babol University of Medical Sciences, Babol, Mazandaran, Iran.
Khadije Nemati Manshour
Department of Medical Informatics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :