AbdomenAtlasNet-۳.۰: Multi-Phase Deep Learning for Robust Multi-Organ Segmentation of Core Abdominal Structures on a Large-Scale CT Atlas
Publish place: InfoScience Trends، Vol: 2، Issue: 10
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 55
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-10_003
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
Accurate multi-organ segmentation on abdominal CT scans is essential for quantitative analysis, treatment planning, and clinical decision support. However, segmentation performance remains limited for small or low-contrast organs, and existing deep learning models rarely exploit the complementary information provided by multi-phase abdominal CT. This study aims to develop and evaluate an attention-based multi-phase fusion architecture capable of robustly segmenting core abdominal organs across large-scale, heterogeneous datasets. Using the AbdomenAtlas ۳.۰ dataset—comprising more than ۹,۰۰۰ abdominal CT volumes from multiple institutions—we identified ۳,۲۲۰ scans with at least one contrast-enhanced phase and complete annotations for nine core abdominal structures. We proposed Abdo-menAtlasNet-۳.۰, a multi-encoder, attention-driven intermediate fusion network that integrates non-contrast, arterial, and portal-venous CT phases while accommodating missing phases via modality-presence masks. Performance was compared with a single-phase baseline (SP-UNet) and an early-fusion model (EF-UNet) using Dice similarity coefficient (DSC), Hausdorff distance (HD۹۵), and statistical testing on an institution-stratified test set. AbdomenAtlasNet-۳.۰ achieved superior segmentation accuracy across all organs, with a macro-averaged DSC of ۰.۹۲۱ ± ۰.۰۰۴ compared with EF-UNet (۰.۹۰۶ ± ۰.۰۰۵) and SP-UNet (۰.۸۹۳ ± ۰.۰۰۶). Improvements were most pronounced for small or anatomically challenging organs—including the pancreas, gallbladder, and inferior vena cava—showing DSC gains of ۳–۶ points over baseline models. The proposed method demonstrated consistent cross-institution robustness and maintained competitive performance even in single-phase studies. Attention-based intermediate fusion of multi-phase CT significantly enhances abdominal multi-organ segmentation, particularly for difficult structures, and generalizes effectively across diverse scanners and institutions. AbdomenAtlasNet-۳.۰ establishes a scalable and phase-aware framework for reliable abdominal segmentation and provides a foundation for future multimodal or downstream clinical AI applications.
Keywords:
Authors
Sasan Shafiei
Faculty of Medicine, Yasuj University of Medical Sciences, Shiraz, Iran.
Danial Soltani
Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Moein Aboobakri Makooei
Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
Amirreza Geranfar
Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
Mahshid Rezaei
Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
Iman Razipour
Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :