BreastSurPro: A Multimodal Deep Survival Model for Breast Cancer
Publish place: InfoScience Trends، Vol: 2، Issue: 9
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 48
This Paper With 12 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-9_006
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
Accurate survival prediction for breast cancer is challenged by pronounced tumor heterogeneity and the presence of censored data. While multimodal deep learning offers promise, performance estimates are often optimistic due to inconsistent validation frameworks. To develop and internally validate BreastSurPro, a multimodal deep survival model integrating clinical, genomic, and imaging data for breast cancer prognosis under a rigorous, censoring-aware evaluation paradigm. This study utilized The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) cohort. Clinical and genomic data (n=۹۵۲) were integrated with MRI-derived radiomic features from a subset (n=۹۲). The model employed a modular neural network with Cox partial-likelihood loss. Performance was evaluated using stratified ۵-fold cross-validation, reporting the concordance index (C-index), time-dependent AUC, Kaplan-Meier analysis, and calibration plots. Benchmarks included Cox proportional hazards and DeepSurv models. BreastSurPro achieved a mean C-index of ۰.۷۳ for overall survival and ۰.۷۲ for disease-free survival, significantly outperforming unimodal baselines (p<۰.۰۵). In the radiogenomic subset, the tri-modal model (C-index=۰.۷۱) modestly surpassed the dual-modality version. Ablation studies confirmed complementary prognostic information from all modalities. The model demonstrated effective risk stratification (log-rank p<۰.۰۰۱) and good calibration. SHAP analysis identified tumor size, nodal status, and driver genes (TP۵۳, PIK۳CA) as top features. BreastSurPro provides a reproducible, interpretable framework for multimodal survival prediction, demonstrating that integrating clinical, genomic, and imaging data yields consistent, incremental improvements in prognostic accuracy.
Keywords:
Authors
Houshyar Maghsoudi
Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Golmis Abdolmohammadi
Department of Radiology, AJA University of Medical Science, Tehran, Iran.
Parnian Nikraftar
Department of Radiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Reyhaneh Ghanavati
Department of Health Information Technology, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :