Attention Mechanisms in U-Net Variants for Brain MRI Segmentation: A Narrative Review of Spatial, Channel, and Transformer-Based Approaches

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 49

This Paper With 13 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-9_003

تاریخ نمایه سازی: 9 آذر 1404

Abstract:

Accurately delineating brain tumors in magnetic resonance imaging (MRI) scans is a critical step in clinical diagnostics, radiotherapy planning, and evaluating therapeutic outcomes. However, several obstacles, including low image contrast, irregular tumor boundaries, and intensity inhomogeneities, often complicate this task. Deep learning methodologies, especially the U-Net architecture, have become prominent tools for automating medical image segmentation. Yet, the traditional U-Net model is limited by its inability to selectively highlight important features or to incorporate extensive contextual information, which constrains its performance in complex imaging scenarios. To overcome these drawbacks, researchers have introduced various attention mechanisms into the U-Net framework, thereby improving its capability to focus dynamically on pertinent spatial and semantic features. This review offers a critical analysis of four notable U-Net variants enhanced with attention modules: Attention U-Net, which integrates gated spatial attention; SE U-Net, employing channel-specific feature recalibration; CBAM-UNet, which combines channel and spatial attention in sequence; and TransUNet, which incorporates Transformer-based self-attention to model long-range dependencies. We comprehensively examine the architectural designs, strategies for integrating attention, segmentation accuracy, interpretability, and computational efficiency of these models. Furthermore, we address prevailing challenges such as limited generalizability, sensitivity to noise, and issues related to clinical adoption. Prospective advancements are also discussed, including hybrid attention strategies, the development of explainable AI, and the integration of multimodal data. This review provides a focused synthesis of key attention-augmented U-Net models for brain tumor segmentation, highlighting their architectural innovations, comparative performance, and practical considerations for clinical use.

Authors

Ali khodadadi

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran.

Mohammad Shakoor

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Magadza T, Viriri S. Deep learning for brain tumor segmentation: ...
  • Cheplygina V, De Bruijne M, Pluim JP. Not-so-supervised: a survey ...
  • Deb SD, Jha RK. Modified double u-net architecture for medical ...
  • نمایش کامل مراجع