A Systematic Review of Artificial Intelligence for Endoscopic and Histologic Assessment in Ulcerative Colitis
Publish place: InfoScience Trends، Vol: 2، Issue: 9
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 31
This Paper With 26 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-9_002
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
Artificial intelligence (AI) shows significant potential to standardize the assessment of ulcerative colitis (UC), but a comprehensive synthesis of its performance across the care pathway is needed. This systematic review critically appraises AI applications in endoscopic video analysis, digital histopathology, and multimodal approaches for UC. We systematically searched MEDLINE, Embase, Scopus, and other databases from ۲۰۱۹ to ۲۰۲۵ for studies applying AI to human UC care. We focused on diagnostic accuracy, prognosis, and operational deployment. Study selection, data extraction, and risk-of-bias assessment (using JBI and PROBAST tools) were performed by two independent reviewers. A narrative synthesis was prespecified due to heterogeneity. From ۱,۸۴۷ identified records, ۳۲ studies were included. Video-level AI models for endoscopic scoring (e.g., Mayo, UCEIS) demonstrated strong agreement with central readers (κ up to ۰.۹۲) and are being evaluated against regulatory standards. Histology-based AI systems accurately classified activity using indices like PHRI and Nancy (sensitivity/specificity ۸۹%/۸۵%) and significantly stratified ۱۲-month flare risk (HR ۴.۶۴). Multimodal fusion of endoscopy and histology outperformed single-modality approaches for assessing histologic remission and treatment response in clinical trials. Diagnostic differentiation of UC from Crohn's disease achieved high accuracy (۹۹.۱% in one study), while complication detection (e.g., CMV colitis) remains emergent. Common limitations included frame-level analysis with patient-level claims, infrequent external validation, and sparse reporting on calibration and fairness. AI demonstrates expert-level proficiency in standardizing UC activity assessment and shows prognostic value, particularly with histology and multimodal data. For successful clinical integration, future work must prioritize robust external validation, standardized outcome reporting, and prospective evaluation of decision-making impact.
Keywords:
Authors
Rezvan Alizade
Faculty of Medicine, North Khorasan University of Medical Science, Bojnourd, Iran.
Samin Safarian
Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Pardis Geramifar
Faculty of Medicine, Islamic Azad University of Medicine, Tehran, Iran.
Ali Parouhan
Liver Transplantation research center, Tehran University of medical sciences, Tehran, Iran.
Fatemehsadat Mirhosseini
Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :