Artificial Intelligence–Driven Approaches for Prediction, Management, and Complication Risk in Type ۲ Diabetes: A Systematic Review
Publish place: InfoScience Trends، Vol: 2، Issue: 6
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 31
This Paper With 17 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-6_006
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
Type ۲ Diabetes (T۲D) is a global health challenge with significant morbidity and economic costs, driven by aging populations and lifestyle changes. Despite advancements in management, T۲D complications remain prevalent, necessitating early and personalized interventions. Artificial intelligence (AI) has emerged as a transformative tool for T۲D prediction, management, and complication risk assessment. This systematic review aimed to synthesize contemporary evidence on AI-driven approaches for T۲D, focusing on methodologies, data modalities, and clinical applications. Following PRISMA ۲۰۲۰ guidelines, a comprehensive search of databases (PubMed, Scopus, Web of Science, etc.) from ۲۰۱۸ to ۲۰۲۴ identified ۲۸ eligible studies. Results highlighted the superiority of deep learning models (e.g., LSTM, Transformers) in glycemic forecasting and risk prediction, achieving high accuracy (e.g., ۸۹–۹۴.۷%) and improved clinical outcomes in randomized trials. Multimodal data integration (EHR, CGM, genomics) enhanced predictive performance, while interpretability techniques like attention mechanisms increased clinician trust. However, gaps persist in prospective validation and scalability. The review underscores AI's potential to revolutionize T۲D care but calls for rigorous clinical trials and standardized reporting to ensure real-world applicability.
Keywords:
Authors
Zolfaghar Lotfi
Department of Basic Sciences, Payame Noor University, Tehran, Iran.
Reza Haji Hosseini
Department of Basic Sciences, Payame Noor University, Tehran, Iran.
Mohammad Aminipour
Department of Basic Sciences, Payame Noor University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :