From MYCIN to MedGemma: A Historical and Comparative Analysis of Healthcare AI Evolution
Publish place: InfoScience Trends، Vol: 2، Issue: 6
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 39
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-6_005
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
The evolution of artificial intelligence (AI) in healthcare has transitioned through distinct technological eras, each marked by unique advancements and challenges. This article provides a comprehensive histor-ical and comparative analysis of healthcare AI assistants, from early rule-based systems like MYCIN in the ۱۹۷۰s–۱۹۸۰s to contemporary large language models (LLMs) such as Med-PaLM and MedGemma, and explores emerging adaptive AI frameworks. Rule-based systems offered transparency and interpretability but were limited by brittleness and scalability. The machine learning (ML) era introduced data-driven approaches, improving predictive analytics but raising concerns about bias and explainability. The ۲۰۲۰s saw the rise of LLMs, enabling conversational AI for clinical triage and patient education, though halluci-nations and safety risks emerged. Future adaptive AI systems promise real-time personalization and con-tinual learning but lack empirical validation. The study synthesizes technical architectures, functional applications, and evaluation metrics across eras, highlighting gaps in cross-era benchmarking and inte-grated governance. Ethical and regulatory challenges have also evolved, from liability concerns in rule-based systems to bias and fairness in ML, and now to safety and alignment in LLMs. Despite progress, fragmentation persists in the literature, with limited comparative analyses and a focus on provider-facing tools over patient-oriented applications. This review underscores the need for unified frameworks to evaluate performance, ensure ethical compliance, and guide the development of next-generation AI in healthcare. By addressing these gaps, the field can better harness AI’s potential to transform clinical prac-tice while mitigating risks.
Keywords:
Authors
Hamid Reza Saeidnia
Department of Knowledge and Information Science, Tarbiat Modares University, Tehran, Iran.
Mehrbakhsh Nilashi
UCSI Graduate Business School, UCSI University, ۵۶۰۰۰, Cheras, Kuala Lumpur, Malaysia.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :