A Systematic Review of Machine-Learning Models for Cardiovascular Risk Prediction

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 24

This Paper With 18 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-7_006

تاریخ نمایه سازی: 9 آذر 1404

Abstract:

This systematic review evaluates machine learning (ML) models for cardiovascular disease (CVD) risk prediction compared to traditional regression-based scores. Following PRISMA-۲۰۲۰ guidelines, we conducted comprehensive searches in MEDLINE, Embase, Web of Science, Scopus, and IEEE Xplore from January ۲۰۱۰ to May ۲۰۲۵. Two independent reviewers screened ۴,۳۷۲ records, selecting ۱۸ studies meeting predefined PICOTS criteria. Data extraction focused on model architecture, validation strategies, performance metrics (discrimination, calibration, net reclassification improvement), and interpretability methods. Risk of bias was assessed using PROBAST, and evidence certainty was graded using a modified GRADE framework. Our analysis revealed that ML models achieved modest but consistent discrimination improvements (ΔAUROC +۰.۰۲-۰.۰۸) over conventional scores, with gradient-boosted trees and deep survival networks performing best. However, calibration drift occurred in external validation, and clinical implementation remains limited by infrastructure requirements and unproven impact of interpretability tools. These findings suggest ML models offer incremental rather than transformative improvements in CVD risk prediction.

Authors

Iman Fereydooni

Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Milad Vosoughi

Department of Internal Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

Arash Alighadr

Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Nikta Taghipour

Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.

Mohammad Javaherinasab

Faculty of Medicine, Bushehr University of Medical Sciences, Hormozgan, Iran.

Mohammadesmaeil Aramesh Borujeni

Cardiology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran.

Ali Mostafavinia

Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :