Toward a Unified Technology Readiness Ladder for Clinical Artificial Intelligence: A Systematic Review and Delphi Synthesis

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 28

This Paper With 16 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_ISJTREND-2-7_005

تاریخ نمایه سازی: 9 آذر 1404

Abstract:

Artificial intelligence (AI) and machine learning (ML) technologies are rapidly advancing, yet their translation into clinical practice remains slow and uneven. This systematic review and Delphi synthesis aimed to integrate and reconcile diverse Technology Readiness Level (TRL) frameworks for clinical AI, creating a unified, evidence-based ladder for assessing AI maturity in healthcare. We analyzed ۱۰ eligible studies, identifying eight distinct TRL frameworks, with only two—CARE and ML-TRL—covering the full nine-level spectrum. Key findings revealed moderate convergence on critical milestones (e.g., dataset provenance by TRL ۳, prospective validation by TRL ۶, and real-world monitoring by TRL ۹), but significant gaps persisted in adaptive-algorithm governance, cybersecurity, and patient-reported outcomes. Empirical validation remains limited, with only four studies linking readiness levels to measurable outcomes. Through Delphi synthesis, we harmonized ۱۰۵ input and ۱۴ output indicators into a consolidated TRL ladder, providing a structured pathway for AI development from concept to deployment. This work highlights the need for standardized, domain-specific criteria to accelerate safe and effective AI adoption in healthcare while addressing regulatory, ethical, and practical challenges.

Authors

Mahsa Sayyari

Student Research Committee, Shahre Kord University of Medical Sciences, Chaharmahal and Bakhtiari, Shahre Kord, Iran.

Hasti Karimi

Lung Transplantation Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Sina Baghi Keshtan

Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.

Atousa Saleknezhad

Islamic Azad University of Medical Sciences, Tehran Branch, Tehran, Iran.

Reza Bemana

Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.

Iraj Rezaie

Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Lamberti MJ, Florez MI, Do H, Rosner S, Menard T, ...
  • Lavin A, Gilligan-Lee CM, Visnjic A, Ganju S, Newman D, ...
  • Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. ...
  • Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK. ...
  • نمایش کامل مراجع