Toward a Unified Technology Readiness Ladder for Clinical Artificial Intelligence: A Systematic Review and Delphi Synthesis
Publish place: InfoScience Trends، Vol: 2، Issue: 7
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 28
This Paper With 16 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-7_005
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
Artificial intelligence (AI) and machine learning (ML) technologies are rapidly advancing, yet their translation into clinical practice remains slow and uneven. This systematic review and Delphi synthesis aimed to integrate and reconcile diverse Technology Readiness Level (TRL) frameworks for clinical AI, creating a unified, evidence-based ladder for assessing AI maturity in healthcare. We analyzed ۱۰ eligible studies, identifying eight distinct TRL frameworks, with only two—CARE and ML-TRL—covering the full nine-level spectrum. Key findings revealed moderate convergence on critical milestones (e.g., dataset provenance by TRL ۳, prospective validation by TRL ۶, and real-world monitoring by TRL ۹), but significant gaps persisted in adaptive-algorithm governance, cybersecurity, and patient-reported outcomes. Empirical validation remains limited, with only four studies linking readiness levels to measurable outcomes. Through Delphi synthesis, we harmonized ۱۰۵ input and ۱۴ output indicators into a consolidated TRL ladder, providing a structured pathway for AI development from concept to deployment. This work highlights the need for standardized, domain-specific criteria to accelerate safe and effective AI adoption in healthcare while addressing regulatory, ethical, and practical challenges.
Keywords:
Artificial intelligence , Technology Assessment , Biomedical , clinical trials , Machine Learning , Delivery of Health Care
Authors
Mahsa Sayyari
Student Research Committee, Shahre Kord University of Medical Sciences, Chaharmahal and Bakhtiari, Shahre Kord, Iran.
Hasti Karimi
Lung Transplantation Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Sina Baghi Keshtan
Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
Atousa Saleknezhad
Islamic Azad University of Medical Sciences, Tehran Branch, Tehran, Iran.
Reza Bemana
Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
Iraj Rezaie
Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :