Comparative Efficacy of General Versus Specialized AI in Emergency Decision Support for Advanced Dementia: A Caregiver-Centric Simulation Study
Publish place: InfoScience Trends، Vol: 2، Issue: 7
Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 32
This Paper With 11 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ISJTREND-2-7_001
تاریخ نمایه سازی: 9 آذر 1404
Abstract:
Informal caregivers of individuals with advanced dementia often face acute behavioral and medical crises requiring urgent decision-making. While general-purpose large language models (LLMs) like ChatGPT offer on-demand support, their efficacy in high-risk scenarios remains uncertain. This study compares general and specialized AI models in emergency dementia caregiving support. A four-phase simulation study was conducted, beginning with real-world emergency scenario collection from ۵۸ caregivers (yielding ۵۲ unique prompts). Four AI models—ChatGPT-۳.۵, GPT-۴, retrieval-augmented GPT-۴o, and a domain-constrained "PDC۳۰ Chatbot"—were evaluated using blinded expert and caregiver reviews. Responses were scored on accuracy, guideline concordance, safety, empathy, and completeness, with errors classified by severity. Specialized AI models outperformed general-purpose LLMs, with the domain-constrained PDC۳۰ Chatbot achieving the highest scores in guideline adherence (۴.۲/۵) and safety (۵.۰/۵) while producing zero critical errors. General models (ChatGPT-۳.۵/GPT-۴) exhibited more critical errors (۴–۷) and lower completeness scores (۲.۷–۳.۲). Retrieval-augmented GPT-۴o also showed significant improvements over general AI, particularly in clinical concordance (۳.۹/۵). Clinically adapted AI systems provide safer, more reliable emergency support for dementia caregivers than general-purpose LLMs. Integration of evidence-based guidelines and domain constraints is critical to minimizing risks in AI-assisted caregiving.
Keywords:
Authors
Maryam Mobini Dehkordi
Shahrekord University of Medical Sciences, Shahrekord, Chaharmahal and Bakhtiari Province, Iran.
Omid Nikoo
Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Shahab Nargesian
Internal Medicine Department, Qom University of Medical Sciences, Qom, Iran.
Fatemeh Rezaei
Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
Tanzina Nowrin
Resident Physician, Department of Internal Medicine, UCF/HCA Florida West Hospital, Florida, USA.
Mohammad Hassanzadeh
Department of Knowledge and Information Science, Tarbiat Modares University, Tehran, Iran.
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :