Presenting a neural network-based framework for drug-target interaction prediction

Publish Year: 1403
نوع سند: مقاله ژورنالی
زبان: English
View: 19

This Paper With 9 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JOBJ-13-1_008

تاریخ نمایه سازی: 19 آذر 1404

Abstract:

Background: Identifying drug-target interactions (DTIs) is a central focus in pharmaceutical research, as accurately recognizing these interactions can play a crucial role in developing modern and targeted therapies. In recent years, numerous deep learning-based models have been introduced to predict these interactions. However, several challenges remain. Existing methods often fail to incorporate the three-dimensional structures of drugs and proteins alongside their SMILES and FASTA sequences, resulting in lower prediction accuracy. Furthermore, many approaches utilize only partial sequence data, thereby overlooking critical information. This lack of spatial and comprehensive sequence awareness ultimately limits the accurate modeling of molecular interactions and binding mechanisms. Methods: In this study, we introduced TGATS۲S-v۱ and TGATS۲S-v۲, two novel deep learning frameworks designed to address the critical challenge of Drug-Target Interaction (DTI) prediction by integrating ۳D structural information of both drugs and target proteins alongside their canonical sequence representations (SMILES and FASTA). The proposed methods leveraged three-dimensional structural information to enhance DTI prediction and were tested on the Davis dataset. Results: The results of the proposed methods were thoroughly analyzed. By integrating ۳D structural data, the predictive power of the models improved significantly. Evaluations showed that these models consistently outperformed advanced baseline models, delivering higher accuracy and robustness in all cases. The proposed model achieves state-of-the-art performance, improving PR-AUC by over ۲۰%. Conclusion: These findings indicate that incorporating ۳D structural information plays a pivotal role in overcoming the limitations of previous models and paves the way for the discovery of more effective drugs and therapeutic advancements.

Authors

Mehran Nosrati

Department of Computer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran

Mahdi Yaghoubi

Department of Computer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Zeng X, Zhu S, Lu W, Liu Z, Huang J, ...
  • Zeng X, Zhu S, Liu X, Zhou Y, Nussinov R, ...
  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, ...
  • Zeng X, Wang F, Luo Y, Kang S-G, Tang J, ...
  • Ye Q, Hsieh C-Y, Yang Z, Kang Y, Chen J, ...
  • Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, ...
  • Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, ...
  • Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. ۲۰۱۵;۵۲۱(۷۵۵۳):۴۳۶-۴۴ ...
  • Otter DW, Medina JR, Kalita JK. A Survey of the ...
  • Arulkumaran k, Deisenroth MP, Brundage M, Bharath AA. Deep Reinforcement ...
  • Ciresan D, Meier U, Masci J, Schmidhuber J. Multi-column deep ...
  • Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep ...
  • Huang K, Xiao C, Glass LM, SunJ. MolTrans: Molecular Interaction ...
  • Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target ...
  • Tsubaki M, Tomii K, Sese J. Compound-protein interaction prediction with ...
  • Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug-target binding ...
  • Wen M, Zhang Z, Niu S, Sha H, Yang R, ...
  • Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, ...
  • Cox DR. The Regression Analysis of Binary Sequences. J R ...
  • Su Y, Guo J, Ling H, Chen S, Wang S, ...
  • نمایش کامل مراجع