Driver Fatigue Detection using EEG Microstate Features and Support Vector Machines

Publish Year: 1404
نوع سند: مقاله ژورنالی
زبان: English
View: 35

This Paper With 10 Page And PDF Format Ready To Download

  • Certificate
  • من نویسنده این مقاله هستم

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این Paper:

شناسه ملی سند علمی:

JR_JBPE-15-6_003

تاریخ نمایه سازی: 19 آذر 1404

Abstract:

Background: Driver fatigue detection is crucial for traffic safety. Electroencephalography (EEG) signals, which directly reflect the human mental state, provide a reliable approach for identifying fatigue.Objective: This study aimed to investigate the effectiveness of EEG microstate analysis in detecting driver fatigue by analyzing variations in microstate features between normal and fatigued states.Material and Methods: This analytical study aimed to develop a supervised machine learning approach for driver fatigue detection using EEG microstate features. EEG data were collected from ۱۰ individuals in both normal and fatigued states. Microstate analysis was performed to extract key features, including duration, occurrence, coverage, and Microstate Mean Power (MMP), from four types of microstates labeled A, B, C, and D. These features were then used as inputs to train and test a Support Vector Machine (SVM) for classifying each EEG segment into either normal state or fatigue state.Results: The classification achieved high accuracy, particularly when combining MMP and occurrence features. The highest accuracy recorded was ۹۸.۷۷%. Conclusion: EEG microstate analysis, in combination with SVM, proves to be an effective method for detecting driver fatigue. This approach can be utilized for real-time driver monitoring and fatigue alert systems, enhancing road safety.

Authors

Zahra Yaddasht

Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

Kamran Kazemi

Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

Habibollah Danyali

Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

Ardalan Aarabi

Laboratory of Functional Neuroscience and Pathologies (UR UPJV ۴۵۵۹), University Research Center, University Hospital, Amiens, France

مراجع و منابع این Paper:

لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :
  • Guo F, Zhou Y, Wang X, Li W, Cai J. ...
  • Fu S, Yang Z, Ma Y, Li Z, Xu L, ...
  • Othmani A, Sabri AQ, Aslan S, Chaieb F, Rameh H, ...
  • Stancin I, Cifrek M, Jovic A. A Review of EEG ...
  • Imran MAA, Nasirzadeh F, Karmakar C. Designing a practical fatigue ...
  • Ardabili SZ, Bahmani S, Lahijan LZ, Khaleghi N, Sheykhivand S, ...
  • Min J, Wang P, Hu J. Driver fatigue detection through ...
  • Michel CM, Koenig T. EEG microstates as a tool for ...
  • Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M. ...
  • Baldini S, Sartori A, Rossi L, Favero A, Pasquin F, ...
  • Li W, Cheng S, Wang H, Chang Y. EEG microstate ...
  • Hua W, Li Y. Electroencephalography Based Microstate Functional Connectivity Analysis ...
  • Guan K, Zhang Z, Chai X, Tian Z, Liu T, ...
  • Hu W, Zhang Z, Zhao H, Zhang L, Li L, ...
  • Kim K, Duc NT, Choi M, Lee B. EEG microstate ...
  • Nagabhushan Kalburgi S, Kleinert T, Aryan D, Nash K, Schiller ...
  • Chen J, Zhao Z, Shu Q, Cai G. Feature extraction ...
  • Apicella A, Isgrò F, Pollastro A, Prevete R. On the ...
  • Gao Z, Li S, Cai Q, Dang W, Yang Y, ...
  • Chen J, Wang H, Wang Q, Hua C. Exploring the ...
  • Luo H, Qiu T, Liu C, Huang P. Research on ...
  • Ren Z, Li R, Chen B, Zhang H, Ma Y, ...
  • Gao D, Tang X, Wan M, Huang G, Zhang Y. ...
  • نمایش کامل مراجع