ANN-Based Modeling of Shear Behavior of Reinforced Concrete Columns under Constant Axial Loads
Publish Year: 1405
نوع سند: مقاله ژورنالی
زبان: English
View: 6
This Paper With 21 Page And PDF Format Ready To Download
- Certificate
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEAS-2-2_002
تاریخ نمایه سازی: 22 آذر 1404
Abstract:
Many older reinforced concrete (RC) buildings designed under outdated seismic codes exhibit inadequate shear capacity, leading to brittle column failures during earthquakes. Accurate prediction of shear strength is therefore essential for nonlinear seismic assessment. This study develops an analytical–computational framework using artificial neural networks (ANNs) to model the nonlinear flexural–shear behavior of RC columns subjected to constant axial loads. A fiber-based flexural model was formulated, while shear strength was estimated through a Mohr’s circle–based approach enhanced with a ductility-dependent degradation parameter. An ANN trained on ۱۶۴ experimental column tests provided highly accurate shear predictions, outperforming existing analytical models. The framework was validatated against independent experiments confirmed its reliability. The proposed ANN-based approach offers a practical tool for seismic performance evaluation and retrofit design of deficient RC columns.
Keywords:
Reinforced concrete columns , Shear behavior , Artificial neural networks (ANN) , Variable axial load , Nonlinear modeling , seismic performance
Authors
Maedeh Sadeghpour Haji
Department of Civil Engineering, Islamic Azad University, Qaemshahr, Iran
Reza Niknam
Department of Civil Engineering, Islamic Azad University, Qaemshahr, Iran
Javad Shayanfar
Department of Civil Engineering, University of Minho, Azurém, Guimarães, Portugal
مراجع و منابع این Paper:
لیست زیر مراجع و منابع استفاده شده در این Paper را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود Paper لینک شده اند :